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ABSTRACT

The pickup and delivery problem (PUUP) represents a class of

sequencing or routing problems where the key facet of the routing is

that a pickup must precede the corresponding, subsequent delivery.

Other considerations such as service time windows, quality of service

parameters or operational constraints on either the driver o. the

4 vehicle are possible. As such, the PIJ)P is a constrained version of

the ubiquitous travelling salesman problem (TSP1), which seeks a

minimum cost route that from an initial point visits each city or

stop once and only once, ending at the initial stop. There are also

similarities between the PIUDP and the much studied vehicle routing

problem (VRP), although the two problems are distinctly different

because of the origin preceding destination requirement.,

The TSP and VRP literature is extensive, offering b th theory and

algorithms for the solution of these problems. Given the similarities

of these problems to the PUDP, those algorithms that performed well on

TSP's and VRP's are discussed in detail and served as the basis for

developing both exact and heuristic algorithms to solve the PUDP.

-Assuming that all problem constraints are expressable in terms of

stop numbers along a vehicle's route, dynamic programming can be used

to optimally solve the problem. The algorithm developed is signifi-

cantly more powerful on heavily constrained problem instances than any

other known technique. Solutions to problems in excess of 45 customers

(equivalent to a 91 city TSI') are solved on an 1BM 3031 computer in a
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matter of seconds. The efficiency is achieved by only generating

feasible state spac^ vectors, thus greatly reducing the storage and

execution requirements. The same dynamic programming algorithm is also

used to solve the multiple vehicle PUDP but with less impressive

results.\ Other exact techniques could not be effectively used on the

PLJN'-ds( primarily to the precedence requirement.

.Heuristic algorithms were also developed and tested. Most of the

algorithms commonly used to solve the related TSP and PUDP perform

poorly on the PUDP, often producing solutions as much as 50 above

optimal. An interchange (3-optimal) heuristic consistently produced

superior results for the single vehicle PUDP. Solutions averaging

within l of optimal were obtained for heavily constrained problem

instances.

- The multiple vehicle problem is significantly more complex than

is the single vehicle problem. Results for the multiple vehicle

problem were acceptable but inconclusive. Consequently, the multiple

vehicle area is judged to be the most promising area for future

research.

.Access en.F 
or

b -;S 1')

r!y A_,
Jt., LI. f

~Fy,
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The purpose of this questionnaire is to ascertain the value and/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (ATC). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433
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A iHlS RACT

''lh pickup and delivery problem (PUI)I') reipresents a class of

seqtuencing or routing paroblems where the key facet of" the routinag is

that a pickup must precede the correslonding. substequeit delivery.

Other considerations such as service time windows, qt,:ality of service

parameters or opetrational constraints on either the driver or the

vehicle are possible. As such, the I11111' a. a constrained version of

the ubiquitouts tratelling salesman problem ([SI'), w hich seck. a

minimum cost route th.at from an initial point visits each city or

stop once and only once, ending at the initi;aI stopo. I her. are al.so

similarities between the 111)1' and the much studi ed veiLI v routiag

problem (VkI'I, althu.:h the two Isroble 'is are dist inct 1: different

becau.se of the origin preceding desti '.at ion r.Ciau rment.

he TSIP and ERi' literature is exttasit., oftfering both theory and

algorithms for the sulsatiion of" these Inllems. Given the similarities

of these prob'l ems to thle 111ll' , thi le ,ll tilhms th.at performed well (oit

ISP's and \'l"s are disLissed In det.ai .id served as the basis for

developing both exact and heuri stic alg |ig thn.s to solve the Ii'.

Assuming that all problem co nstraint!. .11,V expresable in terms of

stop n,,mbers .along a vehicle's route, dyana"nic prougramnminag cn be used

to optimally solve the problem. lhe algorithm developed is signifi-

cant"ly more Iiherftil on heavil) constrained problem instances than any

other known technique. Solutions to problems in excess of 45 customers

(equivalent to a 91 city 1S1') are solved on an 1 1 3(031 computer in a
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matter of seconds. TFhe efficiency is achieved by only generating

feasible state space vectors. thus greatly reducing the storage and

execution requirements. The same dynamic programming algorithm is also

used to solve the multiple vehicle PUDP' but with less impressive

results. Other exact techniques could not be effectively used on tle

1UJ)ll d.cv primarily t. the precedence requirea.nt.

II, -aristic algorithms here also developed and tested. Nlost of the

algoriihms communly used to solve the related IS' and PUd' perform

poorly -n the 'UIIP, often producing solitions as much as 5,d. above

optimal. An interchange (3-optLim.l) hetiristac con.istently prodived

superi, r results for the single vehicle I111WII. Solutions ;averaging

within 1. of optimal were o|,taitned for h.avily con.trained problen

instanc. s.

The mutltiple vehicle problem is signtificantly vklrc complex than

is the single vehicle problem~. Results for the multiple vehicle

problem u're acciptabl e but in onclisive. Consequent Iy the multiple.

vehicle area is judged to be the mo.%t promising area for futre

research.
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OVERVII. OF1 'iiL I'ICKUI' AN) [WLIVIRYl' PROBLEM

I . PROBLEM CLASSIFICATION

The pickup and delivery problem (PUDIP) represents a class of

sequencing or routing problems where the key facet of the routing is

.4 that a pickup must precede the corresponding, subsequent deliver'.

Many other constraints are possible based on the particular applica-

tion. As such, the pickup and delivery problem is a constrained

version of the basic, much studied travelling salesman problem (TSP).

The travelling salesman problem seeks to find a minimum cost path

that from an initial point, visits each city or stop once and only

once, ending at the initial stop. More rigorous definitions arc

provided below and in Chapter 11.

The vehicle routing problem (VRP) is also a constrained version

of the TSP. In the vehicle routing problem the key consideration is

vehicle capacity, although, as with the PIUDP, other constraints may be

applicable. It is not correct to classify the PUiP as a further

constrained vehicle routing problem. Vehicle capacity need not be a

factor in the PUlP. Given that capacity is a consideration, the

manner in which it affects the problem is significantly different

between the two problems. Consequently, it appears the proper classi-

fication is to treat both problems as constrained versions of the TSP.

AA



The PUDP is representative of several practical routing

situations. Examples include dial-a-ride services and courier services.

Notwithstanding, few articles devoted to the PUDP have appeared in the

published literature. This is in sharp contrast to the literature

devoted to the TSP and the VRP which is voluminous and extends over the

last quarter century. All evidence suggests that the PUDP is a

4 relatively unexplored subject area.

II. PROBLEM DESCRIPTION

The dial-a-ride service (DARS) offers a convenient means of

conceptualizing the PUDP. Suppose that an organization provides

transportation services for the handicapped. Vehicles must pick up

these people at their individual origins and take them to their desti-

nations. Return trips sometime later in the day are also possibilities.

The objective is to satisfy all requests for service as economically

as possible. In addition to the origin-destination (O/D) constraint,

other intuitively appealing constraints may include:

1. A limitation on the number of passengers who can occupy the

vehicle at any one time (capacity constraint);

2. A limitation on the amount of time that any one passenger must

remain in the vehicle (quality of service constraint);

3. A range of times in which pickup and/or delivery must he Made

(time window constraint);

4. A requirement that the same driver provide both legs of a

person's round trip (stop-back constraint);
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S. Limits on the total distance that a vehicle may be driven

(operational constraint).

111. PROBLEI SIGNIFICANCE

As mentioned above, the UOP1 is representative of real world

routing situations. Fisher and Jaikumar (10) estimated that urban

delivery vehicles in 1975 travelled approximately 70 billion miles at

a fuel cost in excess of $5.5 billion. Fuel costs have more than

doubled in the last five years. Consequently, annual fuel costs for

urban delivery vehicles in excess of $10 billion is clearly probable.

The percentage of urban vehicles engaged in services that could be

classified as fitting the pickup and delivery model is not known.

However, were the figure as low as 5%., a figure in excess of $500

million is obtained.

Dial-a-ride services are playing an increasingly important role

in urban public transportation. Such services for the handicapped,

or transportationally disadvantaged, are available in nearly every

American city, either provided by the public, by charitable organi-

zations, or by volunteers. Unquestionably, a 5'. improvement in route

efficiency would produce a tremendous savings in both dollars and

barrels of oil.

Experience with the vehicle routing problem suggests savings of

from 510 to 10% are possible by applying fairly simple computer assisted

algorithms to route the vehicles. Because the I'IIIW is inherently

more complex, it appears less likely that a displatcher, acting without
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benefit of some algorithm, could produce a good route. Consequently.

even a greater savings percentage appears possible for the PUDP.

IV. RELATIONSHIP TO TIlE TSP AND THE VRP

There are similarities as well as differences among the PIUDP, the

TSP, and the VRP. Since the TSP and VRP have been extensively investi-

gated, exploitation of the similarities was a logical course of action.

Let G = {N,A,C} be a complete network with N representing the set

of nodes, A the set of arcs, and C [ci ] a matrix of costs represent-

ing the cost of going from node i to node j. A Ilamiltonian cycle is a

cycle that passes through each node iLN exactly once. The TSP is the

problem of finding a least cost liamiltonian cycle on G. The multiple

travelling salesman problem (NITSI') requires that for m salesmen one

find m cycles on G such that every iLN is visited exactly once and

the total cost of the m cycles is minimal.

If we further constrain the NrrsP by requiring that for jny cycle

or tour the capacity (in weight, volume...) of the corresponding

vehicle cannot be exceeded, the resulting problem is the VRP. Although

other constraints, such as time-windows or stop-backs, are possible,

very few articles address them even in passing. One notable exception

is the paper by Fisher and Jaikumar (10), which explicitly considers

the time-window constraints.

In none of these problem definitions is there an), mention of a

requirement that one stop be visited before another. Incorporating

this procedence relationship, required to define the PUDII, complicates
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the "SP or WffSP much more than does capacity. The PUDi) is considered

more complicated and at least as difficult as any of these related

problems.

V. PROBLIM DlIFFICULTY

The TSP has been shown to be NP-complete (12). One consequence

of this classification is that there is no known polynomial time

algorithm that optimally solves it, despite hundreds of man-years

devoted to finding one. If one could find a polynomial time algorithm

for any rne of the more than 300 NP-complete problems, one could solve

all problems in NP in polynomial time. As the following lemma shows,

the PUDP is at least as hard as the TSP. If a polynomial time

algorithm exists that solves the PUDP, it could be used to solve the

TSP in polynomial time. This in turn implies that it could be used to

solve all of the other NP-complete problems. Consequently, the likeli-

hood of anyone finding a polynomial time algorithm for the 11Ul1 is not

considered high.

Lemma I

Unless P = NP, there does not exist a polynomial time algorithm

that optimally solves the general PU)P.

Proof

It will be shown that one instance of the PUDP can be reduced to

two travelling salesmen problems. Since tile 1S1' is NP-comilet. and

4I



cannot be solved in polynomial time unless = NP, this implies that the

PUDP can not be solved in polynomial time unless P = NP.

Consider the instance where all origins are to be visited before

lunch, all destinations after lunch, and the driver must return to the

depot for lunch. Clearly the optimal solution for the PUDP is the

optimal sequencing over the set of origins coupled to the optimal

sequencing over the set of destinations. But these optimal solutions

are the TSP solutions taken over their respective sets. lience, unless

P = NP, a polynomial time algorithm for the general PIJDP does not

exist.

VI. RLSLAPCI!' JUESTIONS

The TSP and VRP literature .ffer , an abundance of theory and

algorithms for the solution of ,i r respective problems. Given

the similarities between tl., OIDP and the VRP and TSP, one would suspect

that many of the same algoritl is could be used for the PUD. "ro

what extent and how well remained to be determined. Consequently, this

research was guided by the following three general questions:

1. Using what algorithms, and under what conditions, can the

PUDP be efficiently solved opt imally?

2. How well do heuristics commonly applied to related problems

perform?

3. Which heuristics (s) provide the best PlliP solutions?



VII. ORGANIATION

Chapter 1i provides a review of tile literature pertinent to tile

pickup and delivery, travelling salesman, and vehicle routing problems.

Those algorithms, both exact and heuristic which have been successfully

applied to the TSP and the VRI' are developed in detail.

In Chapter I1, a detailed mathematical formulation for the PUlI,

is presented. The formulation provides the insight necessary to

explain why some of the algorithms developed in Chapter 11 do not work

efficiently when applied to the PUDP, while others do.

Chapter IV deals with the optimal solution to the single vehicle

problem. A dynamic programming solution is developed which is extremely

powerful when applied to highly constrained PUI' instances. The same

dynamic programming model is also used to solve the multiple vehicle

PUDP discussed in Chapter VI. Lxact solutions other than by the

dynamic programming approach are shown to be much more difficult to

obtain for the PUDP than for the TSP.

Single vehicle heuristics are discussed in Chapter V. Many of the

heuristics that are widely applied to the VRP are shown to perform

poorly on the P'UlJIP, especially when side constraints become more

binding. Special attention is given to those instances of the PU) I

for which the dynamic programming technique provides an optimal

solution. This allows for a precise evaluation of how well a given

heuristic performs. Only relative performance has previously been

possible for all but extremely small vehicle routing problems.

I
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The multiple vehicle PUDP, discussed in Chapter VI, is seen to be

a most difficult problem. The precedence requirements render ineffi-

cient the heuristic determined to be the most powerful for the single

vehicle problem. Further, the additional alternatives available due to

more than one vehicle being available for customer assignment destroy

the efficiency of the dynamic programming technique. Hleuristics that

proved somewhat successful as well as those that failed are detailed.

When failure is encountered, an explanation is offered.

During the period of the research, many areas ripe for research

were encountered. Practical limitations on available time precluded

investigation of these opportunities as a part of this effort.

Chapter VII, therefore, details several of the more interesting areas

remaining to be explored.

I.

. . .. . - . . . . . .. - . . . . . . ,, . . ,0
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The pickup and delivery problem (PUi)P) has bee, classified as a

constrained version of the travelling salesman problem (TSP). The

vehicle routing problem (VRP) is also a constrained TSP'. Any attempt

to solve the PUL)P must, therefore, logically begin with an examination

of those algorithms successfully used in solving these two related

problems. This chapter summarizes the results of such an examination.

The few articles directly relating to the i'UDIP are also discussed.

The travelling salesman problem and the related vehicle routing

problem are two of the most studied problems in operations research.

Literally hundreds of algorithms, many representing minor modifications

of others, have been proposed for their solution. It would neither be

practical nor useful to attempt to address all of these algorithms.

Rather, a more useful approach suggests discussing the basic approaches

and underlying concepts of those techniques that have shown the

greatest success in solving the TSP1.

1. NIA'IILUATICAL FORMULATION

Travelling Salesman Problem

A word description of the TSiP was presented in Chapter 1.

Specifically, the TSiP seeks to minimize

9
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." 1 i ~ j 2 1

subject to:

Kx V2.2

x + I n j =

YiIT I - i -- 1,2,...,n ,2. )

'4 j I•

V . i -
'  * n x . j _<' n - 1 i # i 2 ,3 . . . . , i i( ' .

x. 1

y arb itrary real number - 1,2 .-.

where,

cIj cost of going directly from cit" i to 1, and

I , if tfie sI lesman goes directlv ftrori i t' i to cit.x j
0 ~, otherwise.

Lxprcssions (2.2) and 12.3) i nsurc that the '-, i Sman visits and

departs from each city ex;act"ly once. l~xlressions (2.) and (2.0) are

the subtour-el iminat ion conditions derived originally by Miller.

Tucker and Zemlin (20) and often quioted by others.

Another common expressi( for eliminating subtours is

x . > 1 ( 2 .6 .1 1
I tQ jf 0
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for every nonempty proper subset Q of N, whcre Q is the complement of

Q. Bellmore and Malone (2) shoi cd that this formulation, which is of

order 2n leads to an effectivc solution algorithm b) branch and bound.

The branch and bound algorithm, as well as other solution approaches,

is discussed later in this chapter.

Although the former formulation is more compact than the latter,

both express the problem precisely in mathematical notation. lhe

compact formul-t ion is perhaps more elegant and may be of value compu-

tat ional l" if the constraints must be explicitly considered. 'the less

compact formulation is somtctimc more advantageous i f the constraints

are implicitly handled. For the purpose of defining the ISP, either

is satisfactory. For the research discits.etvd later, there is no cowpqu-

tational preference for one not at ion oter the other. However, the

more compact formulation is used throughout simply because it is

notationally more elegant.

M1iltjle i rai elIinj, Sal esr, an Problem

the multiple travel I ing sa lesman problcm (MP,>) :Ian be easi ly

transformed into a standard IS'. Suppose there are *M salesmcn.

M copies of the origin are included in the cost matrix C = With

each of the copies represelting a1 tInI IIue sto] bitt with the samC costs

relative to the other node; as the or gin hit. Ihe M copie, are

connected with arcs of infinite for extremely large) cost so that it is

never profitable to include one of these ircs in :i solution. lhe

resulting sol ttion to the IS' taken )v(r this cxp;ind'd letwork provides

IO
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the solution to the ,FlSP. Consequently, subsequent discussion onl the

TSP is equally applicable to the more general SISP.

Vehicle Routing Problem

le VRP formulation is similar to the "Sl' formulation except that

it is necessary to include the number of' vehicles, K, into the formula-

tion primarily to define the caplaci"ty con.traints, t4 ' for each vehIcle.

Each customer has a requirement. r An integer programmiig formulation

for the \RP is:

minimize C"L N
i j k : )

subject to

, x.. = 1 , j i,!2 ..... n .

rJ '
i k

r.- . 1" .K (2.9O

j - lk . =.2..

S i a j ij - IK ..

.,. = I , K = I.,..... (212
j jj

y Y n n-I i .0 1,2....n (2.131
" ' K . "-.
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*O, I for vv.ry A and k (2.14)

arbitrary real liambvr. i I . ..... i. (2, ISj

%hhere

I. If hiL~~ cl k vi.it' ctisto,:,vr iemvd iately after
*., = \'i iting customer i

0,. ot herw, i se.

ML&aay uf thLse exp ressions are logica.l ext.insions of those for the

n(2., 'requires that if a %chicle visits a customer, it

must depart from this same locatiot'. Lxpressions 12.10) and (2.11)

represent the capacity and operational limitat ions of the kth vihicc,

while 12.12) insures that a vehicle must be used once and only once.

lhe formilat ion given above is refered to hereafter as the standard MI'.

Other constraints, such as deliv'ry ,indoes. ;are seldom addressed

at all. One notable exce'ptaon is the paper by Is sher and .Jaikumar

J1(). which explicitly considers the delivery time window constraints.

Ihe r formiuIation is much nxre complex and is, therefore, not included

here.

I I . I.ACI AIL.GORHI'IIS

Finding exact solutions to all but relatively smallI (less than 50

cities) travelling salesm;an problems has proven to be a difficult task.

I.xact solutions to the vehicle routing problem are much more difficult

to come by. Christofides was credited with claiming that the largest

vehice routing problem oft any complexity that had been solved exactly
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involved only 23 customers (18). Christofides subsequently reports

optimal solutions of VRP's of up to about 30 customers (4). The reason

for these difficulties is the exponential growth in computations

required to guarantee optimality.

Four approaches for finding exact TSP solutions will be discussed.

These techniques are integer programming by means of cutting planes,

branch and bound based on subtour elimination, dynamic programming,

and Lagrangean relaxation using minimum 1-trees. None of these

approaches are new, the most recent introduced to the literature in

1970 (22). In addition, a Benders decomposition approach for solving

the vehicle routing problem will be outlined.

Integer Programming

Other than the integrality conditions on x.. in expressions (2.5)

and (2.14) the above formulations allow for solution by ordinary linear

programming (11). Suppose these conditions arc relaxed to

0 xij < I for every i,j (2.16)

The LP solution will not generally be integral. However, it is

possible to add additional constraints to the final L' tableau to

eventually obtain integrality. "These additional constraints are called

cutting planes. Garfinkel and Nemhauser (13) provide a treatment of the

theory of cutting planes. The original theory of cutting planes is due

mainly to Gonx)ry (19).



The basic idea of a cutting plane algorithm is to "cut away,"

using hyperplanes, the noninteger portions of the feasible convex hull

of the relaxed linear program. These hyperplanes are constraints that

can be generated at each step from the current LP tableau, and taken in

such a manner that no feasible, integer solutions are ignored.

Finite cutting plane algorithms have been proposed and used to

sulve the TSP, as well as other integer programming problems. For the

most part they have not performed well, the exception being the recent

work of Miliotis (25). Fisher and Jaikomar (10) in their VRP algorithm

use the Miliotis cutting plane algorithm to solve TSP subproblems with

impressive results.

Branch and Bound

= Branch and bound techniques are by far the most common type applied

to the TSP, especially those employing a subtour elimination scheme.

Expressions (2.1), (2.2), (2.3) and (2.5) taken separately define the

assignment problem (AP) - the objective being the most efficient assign-

ment of n men to n distinct jobs. The assignment problem, a relaxation

of the TSP, is easily solved in polynomial time. Since the AP is a

relaxation of the TSP, the optimal solution to the AP, which is most

generally not feasible to the TSI', provides a lower bound on the

optimal value of the TSP solution. Any feasible TSP solution provides

an upper bound. If the All solution is not feasible to the TSP, because

of subtours, one branches into K subproblems, where k is the number of

arcs in one of the subtours. In each subproblem, one of the k original
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subtour arcs is assigned an infinite cost, this breaking or eliminating

the subtour. The k new AP's are then solved, bounds computed, and the

process repeated if subtours are present and the lower bound is less

than the best feasible tour as yet found. Eventually, one is assured

of finding the optimal solution, although the size of the branching

tree may become enormous for large problems.

The approach outlined above represents one method of using branch

and bound techniques to solve the TSP. The key to the success of a

branch and bound algorithm rests with obtaining very tight bounds, thus

greatly reducing the size of the branching tree, and with branching

rules, which also minimize the resulting tree size. Branch and bound

algorithms often find optimal or near optimal solutions toward the

beginning of the enumeration. Thus, much of the time required by the

algorithm is spent in verifying tile optimality of a tentative solution.

Consequently, branch and bound techniques can often be terminated early,

producing a very good solution. In this sense, tile technique is used

as a heuristic. Most cutting plane algorithms do not have this

characteristic.

Dynamic Programming

Dynamic programming has been used less on the TSP than some other

techniques. It does not appear that dynamic programming has been used

with any success on the VRP. The computer storage requirements are the

primary limiting factor. Even though the dynamic programining recursions

allow for treating combinations rather than permutations of the
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Eoperations required, the combinations increase exponentially with the

size of the problem. Consequently, core storage requirements to solve

a 20 city TSP exceed 900,000 words.

The basic dynamic programming recursion to determine a shortest

partial TSP tour from the origin (node 1) to node j that passes

through il, i2 , .. , i is
k-I.4.

fk(jjiI,i2,- ., ik) = min [fk-l(imil,i2,... ,ml .. k-1)

+ im ] (2.17)

By letting

, k = {i1,i2,... ik 1 (2.18)

we can simplify (2.17) to obtain

fk(jIs k ) = minifk l(imlSk m  + c i) (2.19)

m il

The initial recursive equation thus becomes

f 2 (j 1 ) = cI,iI + c.il for all i , I 1 and i1  $ i, (2.20)

while the final, which terminates with an optimal tour value, is

obtained by solving

f 11IIS n) min [f n-I (i m Is  m + i mI n m (2.21)
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The number of f values is given by

g(n,k) = (n-l)! / (k-i)!(n-k-i)! (2.22)

which reaches a maximum halfway through the computations.

The procedure for determining the optimal tour is a two phase one.

First, f' k = 2,3,....n are computed recursi ly by (2.10). Then

the optimum ordering (il,i2 ,...,i n ) is obtained by picking the im such

that (2.10) holds in decreasing order of k, k = n, n-1, n-2 ..... 2.

Lagrangean Technique

One of the most powerful techniques for solving the symmetric I'SP

is the 1-tree approach of field and Karp (22,23). A TSP is symmetric if

cij = c.. for every, i,j (2.23)

A 1-tree is a tree taken over vertices 2,3,...,n, connected to vertex

I with two edges. A TSP tour is a i-tree for which each vertex has

degree 2. Figure 1 depicts a 1-tree over 8 vertices. A minimum weight

1-tree can be found by first finding a minimum spanning tree over the

vertex set {2,3,...,n}, and then adding the two least cost edges at

vertex 1. The minimum spanning tree is easily solved in order n time.

Changing the cost matrix for intercity distances by

= c. + TT. + . (2.24)
d J

, does not alter the optimal solution to the TSP' but does alter the

.o4
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6 3
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7

IFigure 1. An example of a 1-tree.
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solution of the minimum l-tree. An iterative method for approaching

the optimal solution from below is based on altering the Ii and 7's so

that each vertex is forced toward degree 2. Normally, the algorithm

must employ branch and bound to obtain the final TSP tour. However,

as Held and Karp note the bounds computed by the final minimum 1-trees

. are so sharp that the search trees are miniscule compared to those

normally encountered. . . . " Consequently, the 1-tree approach could be

considered a branch and bound algorithm that uses a Lagrangean

relaxation to compute tight lower bounds. It is important to note

that the technique is only valid for the symmetric travelling salesman

problem.

Christofides, ingozzi, and Toth have extended Held and Karp's

Lagrangean relaxation concept to the VRP (4). It is this work for which

solutions up to 30 customers are reported. The key factor allowing for

success is again tight bounds computed by similar Lagrangean penalty

or relaxation procedures.

Benders Decomposition

One solution technique (10) for the VRII, which specifically

addresses delivery windows, employs Benders decomposition. The

algorithm iterates between a generalized assignment problem (GAP) to

assign customers to vehicles such that vehicle capacity is not exceeded,

and a TSP subproblem for sequencing the stops. As mentioned above, a

cutting plane algorithm is used to solve the TSP. Infeasible sub-

problems produce the Benders cuts needed to obtain delivery window

kLa
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feasibility on subsequent iterations. Computational results remain

incomplete, but appear promising.

Fisher and Jaikumar comment that although their algorithm will

produce an optimal solution in a finite number of iterations, they

expect that for practical size problems the algorithm will be used as

a heuristic. This is accomplished by terminating the iterations prior

to achieving optimality and using the best feasible solution found thus

far.

The upper limit on the size of a general TSP that can be optimally

solved, within practical limits on time and computer storage, by any

known technique is questionable, hut certainly is not greater than 100

cities and is probably less. For the VRP, this limit is significantly

lower. For problem instances of such size that obtaining an optimal

solution is impractical, heuristic solutions provide the only alterna-

tive.

Il . HIEUJRI STIC AL(;ORIIIIMS

A multitude of heuristic algorithms have been prt;)osed for both

the TSP and the VRP. Many heuristics for the VRP are just slight modi-

fications of ones used for the TSP. The heuristics to be discussed

fall into one of three broad classes: tour construction approaches,

tour improvement approaches, and composite approaches. The latter is

the logical combination of the first two. Each class, and the common

representatives of each, will be examined.
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Tour Construction Heuristics

Tour construction algorithms generate a tour, one stop at a time,

from the given distance or cost matrix. When constraints are present,

as in the VRP, the next stop is added to the partially constructed tour

only if it can lead to a feasible final solution. lith the V'RP, this

,ould normally be a check to insure that vehicle capacity had not been

exceeded, a relatively simple procedure. Insuring feasibility with

delivery windows is a much more complicated procedure and may, to

some extent, explain why such constraints are not treated in the

literature.

By far the most common of the tour construction procedures is the

Clarke-hWright savings algorithm which dominates VPP solution attempts.

Others include the nearest neighbor or greedy approach and various

insertion approaches. Since the literature for the VRP indicate the

general superiority of the Clarke-Wright models over other tour con-

struction heuristics, they will be discussed first.

Clarke-v ight savings. The hasic concept of the trl'rl\'cI inc saved

heuristic was developed by tlarke and Wrij t (7)1 , cre'ditc'd the

earlier work of IDantzig and Ramser (8). In both cases, the procedure

was developed to solve the VR. NUme rous modificat ions have bcen

suggested, but the tnderiying concept rema ins inri ant 1 1, 2S,

412, 431.

The procedure begins by selecti mll onC node Is tilt oril, m n it h

the V0J, no choice is re, quired. Initial one vSiiiiis hat e c'x e top

is visited directly from the origin. I]lit- the s ii iiis hlit call be



achieved by combining two subtours into one, by linking stops i and j,

is computed by

s cli + clj - cij (2.25)
ij i ~

Beginning with the largest of these savings values, routes are

assembled such that the next stop added has the largest remaiining

savings - provided that a constraint is not violated. Customers that

have been linked are treated as a single macro customer. Figure 2

demonstrates the algorithm for two stops i and J. Once a pair of stops

has been linked, they remain linked. The algorithm continues until all

stops have been assigned.

Most commercially available algorithms for routing vehicles are

based on the Clarke-Wright savings concept. Survey results iadicate

a percentage in excess of 80%, including the 13,I code, VSPX, which is

the most used package in America (18). Empirical evidence suggests

that, on average, the Clarke-Wright savings method produces vehicle

routes that are as good as, and often better than, routes produced by

other heuristics for the standard VRP. Christofides and Lilon (6)

obtained an average deviation of 3.2% from optimal on 10 small vehicle

routing problems.

One of the attempts to improve the Clarke-Wright model is b.

modification of the savings equation. YellowI (13) suggested a route

shape parameter 0 such that the equation is

+..c= c 1 -+ c.. .. (2. 2 )
Io Ji I j iJ
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.1 1' L1t thle pa.'ramjeter liters tile 1211ph~S i S placed oil the cost between

sto i 'Ind i inl relalt ionl to thej.- r costS reClat lVC to the central depot.

11 1 I el low' s model reduices to the (: r'kc-hri ght model

i: ;pi-11jY, Several values of' are tried, inc lud ing 1-=I. 1 Hireioie,

'icllt is m et hod always produces at least as good result ais thle

II I lm1!An and C:ochran ( 59 )and "I i Iiian and Cain (38) st , S e

another- approach hased onl extc nd ing the sav ings calculations to mere

t han 1 ne s top in the tutkixre . Al though the ir c oi-h ined reportedl we rlt

ar liited to tW iochoices, inl sequece C, thle colic ep t i s Ct )n, C et

three or more in sequence. Ifoiexer, thle p)OSS itIC OT h~l comb13t i onIs ar1c

order ni' , %where is thle number of' posit ions e.iriined. 11herefore, t hi S

procedure rapidl y becomes expjenix ill tC7S 0 fi. CoII t A mutt on 11 1 1 1'rtI

Nearest tiig hbo r. flhc nearest neighblor proc edure s, thle s imp Ic st

and perhaps most naive ot' all henri stics sunf ,ested. ()nIa I1%Is

Selects the nearel-st iunx isited, fecasible Stop until thle touir I, cr

pleted . Bucatise of' thle %-a in %sli cl the ;ti gor ithn1 works,, it is of't en

reerred to as ;i greedy a I fr it hm. hfie prima ry .1Ipea of- hie greedy

approach is its simplicity. It i cis i l miidcrst ood and large Iprohlctns

Canl easily h e Solved by ha,,nd. I~n fort illUiat i thi' ed approach' d1)1-,' (oes

not normally produce '"good"' touirs for cither the VI 1I or the URP.

Ine rt ionl pr-ocedujres. Anl insert ion prcedurIe tsS spec i tic

select ion ruilc to pick a stop not yet in the pairtial solut ion aind then

determines Where to inlsert thSStop. I teecms pcs of- sel e~ loll

IL0



criteria for the next stop to be included are nearest, farthest,

and random, with reference to any one of the nodes included ill tile

partial tour. Insertion is accompli:;hed for node k by finding arc

(i,j) ill the subtour which minimiz-es

c ii c - cij

subJect to the problem constraints, if aniv. Compuit ation;al expcrience

indicates results, within 3-5. of optimal or best known solution arc

attainable with insert ion algorithms (.7).

Four imj~rovcmcnt Ileurist ics

Ihe basic idea behind tour improvement procedures is to take a

given feasible tour and systematically modifv the toulr to obtain a

better one. lhe procedure is one of arc interchange. Iwo related

heuristics have worked well on the TSI' and the VRI': the r-optima l

hetristic and the )-optimal heiristic of Lin and hernigha.n (21).

r-opt i l ;l. Ihe concept of r-optimality is aln out growth of rescearch

oii the ISP. Christofides and .Ilon ((,I appear to hive been the first

to ipply the concept to the vehicle rout ing problem, with rcsults at

least as good is thost" obtained using the (.larke-Ihri ght approach.

Ihe term r-optirial imll i(" th;it no improxement in a given feasib i

solultion is pos, hlIe by eliminating any r Ilinks and rcpl;icinK ther by

r new I inks. In other virds. the p)rocviire tcri'iiilatcl it a loca1l
1"

op tir tItm. "he r-optiral rma ',IIedzre is an M)(n ) a"gorithin. Consequent ly,

mil
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only 2-optimal and 3-optimal interchanges have been used for tile 'ISP

and VRI6. Larger values of r could be used and would result in at least

as good a solution since r optimality implies r-I optimality. llowever,

the increased computational cost could apparentl' not be justified.

Christofides and Lilon suggest that a 3-optimal algorithm first

4 find a 2-optimal tour and then use this tour as the input to the

3-optimal algorithm. Figure 3 shows the only legitimate reconnection

pattern for the 2-oltimal algorithm and the five reconnection patterns

for the 3-optimal algorithm which exclude duplication of a 2-optimal

pattern. In Figure 3, tile letters represent the arcs that are removed

and the numbers represent the specific stops that are to be reconnected.

Initially, the stops are visited in numerical sequence, with inter-

vening stops unnumbered. The heavy lines represent all intervening

stops between each of the two endpoints; the dotted lines the single

arc removed; and the remaining lines tile new arcs. 1ihe patterns do not

depend on whether the network is directed or undi rected. 1however, ill

the directed case, some of' tile patterns may be infeasible due to the

nonexistence of an arc in the reverse direction.

*-optimal. Closely related to the r-optimal procedure is the

S-optimal technique of Liin and Kernighan. I lIe )-optimal heuristic

was developed to solve tile "ISI' and does so twith remarkable results.

lhe probability of optimally solving a gilen 10 city IlI' is reportedly

close t'- one, while an optimal solution to a Iu city "ISP is

reported at close to 2:,o
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(a) 2-optimal
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Figure 3. Two and 3-optimal reconnect ion patterns.
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The X-optimal approach works essentially in the same manner as does

the r-optimal approach except that X is not fixed at any step of the

iteration process. Rather, for each iteration, X starts at a value of

2, i.e., two arcs are initially removed and a 2-optimal solution found.

Then a third arc is removed and a 3-optimal solution found. Additional

arcs are incrementally removed until no further feasible improvement

in total tour cost can be made. Consequently, four, five or even more

arcs may be removed at one time. With five arcs removed, the algorithm

is searching for a better solution than the current 4-optimal one.

The algorithm insures that if an arc is removed, a feasible reconnection

pattern does exist, thus precluding investigation of profitable, but

infeasible reconnection patterns. The creation of separate subtours

is an example of an infeasible reconnection pattern.

Composite Heuristics

A composite procedure constructs an initial tour using one of the

tour construction techniques and then attempts to improve on this

solution using a tour improvement technique. Since the composite will

always do at least as well as the tour construction algorithm without

improvement, the question of whether to use a composite is one of

accuracy desired and resources available. Several unique composite

approaches have been suggested, specifically for ipplication to tile

VRP. Two of these are of special interest to the material developed

in later chapters.

i0

" I
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Sweep algorithm. The sweep algorithm, developed by Gillett and

Miller (IS), employs the Lin-Kernighan algorithm to sequence stops on

cluster generated routes, Other models of the vehicle routing problem

can be characterized as solving one big problem. Gillett and Miller

use a technique which divides the big problem into k subproblems,

where k is the number of vehicles.

The algorithm orders all delivery points sequentially by their

~1

polar coordinate angle and then selects routes by sweeping through the

angles. Points are not added if one of the constraints would be

violated. An exchange routine is applied to the resultant route

structure to obtain any- additional route improvement. The sweep and

improvements are accomplished in both a forward and a backward direction

with the best result taken as thle final Solution. Cillett and Miller

recommended and used the Lin-Kernighan algorithm for the improvement

step. They claim that problems well in excess of 100 customers are

computationally feasible with their sweep algorithm, and solutions are

very competative with other solution approaches.

NTIOUR. MTOUR is the name given to an algorithm developed b\

Russell (36) to solve constrained multiple travelling salesman problems

or constrained VRP's. The additional constraint is a delivery window

or a due date requirement. Russell solves the multiple problem as a

single problem on an extended network, as discussed above, using the

Lin-Kernighan approach.



31

As with all of the tour improvement heuristics, an initial

feasible solution is required. In the more heavily constrained

environment, such a starting solution may not be obvious. In the more

constrained problem, the feasibility of arc interchanges greatly

complicates the X-optimality procedures. Notwithstanding, Russell is

one of the few who does address the time window constraint and he

reports good success in using his M'OUR on his test problems.

rhe heuristics discussed here are not intended to be exhausive.

However, they do represent the basic concepts and approaches that

have been successfully applied to the TSP and to the VRP. Art.cles

devoted specifically to the class of problems described by the

pickup and delivery problem are far less numerous.

IV. PUDP RELATED LITERATURE

Two articles and one working paper discuss subject areas that

fall within the framework of the PUDP model. Only the article by

Psaraftis (34) is considered significant to the research effort. A

brief summary of the other two is presented before Psaraftis's article

is discussed in more detail.

Single Vehicle PUDIP

In their 1979 unpublished paper, Driscoll and Emmons (9) discuss

routing of a single vehicle to meet pickup and delivery requirements.

The only problem constraint is that a pickup must precede a subsequent

delivery. The vehicle is taken to have unlimitCd capacity. Driscoll
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and Emmons propose a heuristic that employs a 2-optimal algorithm. All

origins are 2-optimal sequenced, and then all destinations are

2-optimal sequenced. Finally, the two lists are joined, and a final

2-optimal sequence is formed.

Dial-a-Ride Systems

Stein (37) presents an investigation of the quality of any

proposed heuristic in a theoretical, asymptotic, probabilistic sense.

No specific solution is offered. All of the results cited implicitly

assume vehicles of unlimited capacity.

Dynamic Programming and Dial-a-Ride

The May 1980 edition of Transportation Science includes the article

by Psaraftis that outlines the use of dynamic programming to optimally

solve the single vehicle, many-to-many, immediate-request dial-a-ride

problem. This article appeared subsequent to the research reported in

latter chapters, and in no way influenced that work.

The term many-to-many is used to imply that the pickup points and

the delivery points of the individual customers are all distinct points.

Immediate-request is used to imply that every customer wishes to be

serviced as soon as possible. The article addresses both the static

and the dynamic cases. Static implies that no additional requests for

service can be satisfied by the single vehicle once it begins servicing

customer requests.
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Objective. Psaraftis uses an objective function that is a weighted

combination of total service time for all customers and of the total

service time for all customers and of the total dissatisfaction experi-

enced by customers in waiting to be picked up and awaiting deliver), at

their respective destinations. A more conventional objective function

could be substituted without altering the algorithm. A maximum

position shift (NPS) limits the absolute difference between the order

in which a customer is served on the route developed and the position

a customer held on a first come first serve list. This "position"

orientation to the problem is well suited for solution by dynamic

programming. The precedence, NPS and capacity constraints are all

taken care of as the recursive procedure develops.

State vector. To define the state space, a state vector

(L,k,k 2 ,...,k N) is used where L represents the point or stop the vehicle

is currently visiting, N is the number of customers and k. is the status

of the j th customers such that

k. = 3: customer j has yet to be picked up,

k. = 2: customer j is in the vehicle, and

k. = 1: customer j has been delivered.

A series of screening steps are used to determine if a particular state

vector is feasible or not. One of the screening procedures requires,

for each state, examining subsequent or next states reachable from the

current state vector in order to determine if the present vector can he

feasibly extended. The current state vector, tentatively classified as
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feasible, is reclassified as infeasible if all subsequent states are

determined to be infeasible. Consequently, much of the computational

requirement involves these screening procedures.

Storage requirements. Psaraftis' dynamic programming algorithm

requires a minimum of 2 N 3 storage locations, where N is the number

of customers. For example, for 15 customers a total of over 430 million

storage locations would be required. As actually implemented, Psaraftis'

algorithm would require in excess of I billion storage locations to

solve a 15 customer problem.

Computational results. The algorithm runs as an exponential

function of the size of the problem (number of customers), but is shown

to be asymptotically more efficient than dynamic programming applied

to the travelling salesman problem. The largest problem reported on

irwolved nine customers or 18 specific stops and required nearly 600

seconds to solve. Slight improvements in running times were noted as

the MPS and capacity values were decreased, thus making the problem

more heavily constrained. The amount of improvement between an uncon-

strained problem and a fully constrained problem (pickup followed by

immediate delivery of each customer in first come first serve order)

was less than 75%.

The algorithm as constructed can only he used to solve a single

vehicle dial-a-ride problem. It appears to be practically limited to

problems of nine customers ar less due to storage and execution require-

ments. In Chapter IV, a different dynamic programming algorithm is

e
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developed. This dynamic programming algorithm is much more powerful

than Psaraftis' is on the more heavily constrained problem. Solutions

to problems of well over 50 customers are readily attainable. The

algorithm also can be used to solve the multiple vehicle problem.

4I



CIIAPTFER III

MATI IEMAT I CAL FOIRMU LAT ION

I. MEMORY REQU I REMENT

In Chapter I a word picture of the pickup and delivery, problem

(PUDP) was presented. The key problem facet was seen to be the prece-

dence relationship, requiring an origin be visited before its corre-

sponding destination. Chapter 11 includes the mathematical formulations

of the related travelling salesman and vehicle routing problems. These

formulations are not directly extendable to describe the PUDP. The

precedence relationship and any capacity restrictions preclude such an

extension.

In order to define the precedence relationship as well as many of

the other suggested, possible constraints for the PUPil, it is necessary

to include in the model a memory to keep track of the sequence or timing

of the stops. Identifying the sequence of stops is required to insure

that a destination is not sequenced before its origin. Guaranteeing
that time windows, quality of service standards and especial-l the

vehicle capacity limitations are met, are examples of the other

constraints that are time or sequence dependent. The memory provision

can be achieved by incorporating integral time periods into the model.

The time period approach is mandatory if an integer linear programming

formulation to include the capacity constraint is desired.

30t
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1I. NOTATI ON

The following notation will be employed through the remainder of

this chapter:

L - number of nodes. L equals the number of origins plus

number of destinations plus one for each vehicle's

starting and ending point. Each item's or person's

origin and destination is assigned a unique node.

Consequently, if one specific location were to serve as

a destination and a multiple origin of multiplicity m,

with each origin having a different destination, m+1

distinct nodes would be required. There would be zero

cost between each of these m+l nodes. The depot from

which all vehicles are dispatched is assigned stop

number 1.

n - number of origin/destination pairs.

n = L/2 - # vehicles.

N = n+1 - the total number of distinct points.

0 - set of origins.

I) - set of destinations.

K - number of vehicles.

- capacity of the kth vehicle.

R = (t r- a vector whose i th component repr.sents the almount or

quantity to be moved from oriijn i to destinition I*n.

We assume r. = 1 ieO for tHie PAbS.

hL ft
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c. cost of direct travel from stop i to stop j [he cost can

be distance, time or other suitable measure.

r.. travel time from stop i to stop j. Since travel time may1J

be a valid measure of cost, it is possible that c =

for all i and j. However, it is not necessary that any

specific relationship exist between these values.

e. earliest time that slop i (either a cu>totcr' s uri, cn or

destination) can be serviced. The value can either he

expressed in terms of clock time or by a period number.

latest time that stop i can be serviced, expressable in same

manner as e..I

Qj - maximum allowable time between pickup and delivery for the

jth customer requi rement. Q can cither be expressed in

clock time or by the number of intervening periods.

1) - upper limit on the distance or other appropriate measure

of operational limits for the Kt h vehicle.

1, if vehicle k procceds directly from stop i to stop ,
k

x. k Where j is the vehicle's tth stop.iJ t

0, otherwise.

Ti  - clock time at which customer stop i is visited. It is

assumed that the starting time is assi ned a nero time.

S a sea ;a takeln to be larger' tha the length of ;111 tY I c

tour.

- set of time leriods.
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11. ''OUR CONTINU ITY CONSIRAINTS

As w ith the mIIl t iple travCl I ing salesiaI in and the vehicle routing

problems, the total of all idiv idual tours must incorporate a 1I N

stops. Because of the parameter t in the formulation, these constraints

can be expressed more comlactly tihan they can he by using the more

conventional constraints. As before, com);ictness .s preferred only for

mathematical elegance.

Conventional Constraints

Expressions similar to those for the Ir;ivc1 i sa lesI!,;iul and vehicle

routing problems can be used to force ton r coot io it V fo - tile P1ITP. I he

problem is

imimiZe c.. x 1
ijtk i jt 

" 

t

subject to

itk ijt

N Nk 1k r r 1 . ,... .N
XX.
. rit irt K--,,. k

N
I , k = 1,2. 1,.1

N N
v. -v.N x - I, i ..... N

k~l t' .t

" 4
i q) " -



Sx.. tC{O,II for all i,j,t and k 3.0

y i arbitrary real number. (3.7)

Expression (3.2) requires that every stop be visited exactly once,

while (3.3) states that if vehicle k visits a given stop, it must aIlse

depart from it. Lxpression (3..) insures that no vehicle is used more

than once. 1he subtour elimination equations (3.S) are an extension

of those proposed by li I lei, *liucker and em li n for the the t raveliing

salesman problem (20} . "lhe nutlmber of decision var ables is of order

KN3. It should be noted that with the cxception of the addition of the

period subscript on the decision variable x, (3.1) to (3.71 are identi-

cal to those defining the vehicle routing problem. In f.tct. these toni

continuity expressions could be expressed withouit incIiding periodicity.

Periodicity is required in defining other constraints, however, as will

be seen later.

flact (Continuity Conist ia i n t s

A paper by Fox, (;avish and (;ra's (li provides a compact

formulation of order N for the time delendcnt ttrivel i ing silecsman

profl) Iem (lIlSi' ). Ihbe "li I,1' iq ;i v;ariation of the IS in rh ch

C = Vl.it . The cost of going from i to J depends on the time period

t . It is assuned that tyrivel time between ;m) two cit ie; is one time

period. (Iearl it ( is invariant over t . the 11)1SP redices to the 11S'.

The ll115' furmi Iat ion of (II 1 can be expanded to deftine t ie tour

a



continuitv constraints for th( PON1W. The prohlem is

minimi ze cj kj 38

subJect to

- k
X. - 1 (3.9)

itk jt

N N N N I
; , [ t x . . . . -t .. . .I i t, , X

j I t=2 k=l j=l t=1 k=l

(3.10)

N N
* - . = 0 . .... (3 1nt. im~l lt ' k- 1,2,. .. ,k(.1)

j,t=1 ttl

N
" x I I k = 1,2,...,K (3. 12)

x. , I } or all I , , t and K (3.13)

lhese equations are of order NK, thi lc the convent ional expressions

rcquire equitions of order N2
. As before. the inmber of dccision

variables is of order KN3. Expressions (3.11 ; ad (3.12) are analogous

to (3.3) and (3.,). The contribution of fox, (;avish and (;raves is that

exprcssions (3.9) and (3.11)) effect subtour elimiin:ation.

"ti6
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IV. ORIGIN/DESTINATION CONSTRAINTS

The key element that distinguishes the pickup and delivery problem

from the TSP and the VRP is the precedence requirement of origin before

destination. This requirement can be expressed as

N N N Nk 7' k >
t x i t x. i t x2. > I

• i i-1 t=1 ,~~ ~ t=l I

for ever) jcO (3.14)

Were one willing to include the decision variable T in the formulation,

then

T. < T for every jcO (3.15)3 J n

would express the same requirement. The latter expression does not

require the periodicity parameter t, but does increase the number of

decision variables.

Unless K = 1, it is also necessary to insure that the vehicle

visiting the origin is the same vehicle thzt visits the corresponding

destination. This can be accomplished by

N N N N" k N k for every i t
S Xi,j+n t .. .. lit k = 1, K

i=l t--I i=l t=l . . .

S . 101
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V. VEHICLE CAPACITY CONSTIRAINTS

The impact of vehicle capacity on the PUDP is totally different

than it is on the VRP. For the VRP, a given set of customers either can

or can't be serviced by a given vehicle, depending on the sum of the

customer's requirements. Kith the PUDIIP, it is the sequence of stops

which determines the quantity on the vehicle at any time. This fact is

. what necessitates the use of the period parameter t. The capacity of

a vehicle is not exceeded at any time so long as

Tk T N N k
2. 2 r. x.. Y ) r. x. < Mt = l i = i j = n + 2 -n o tt = ] j = n + k .i

for ever) PT 1 )
k = 1, 2 .... ,)

VI. TIME WINDOW CONSTRAINTS

There are two approaches to defining time window constraints. One

approach employs clock time, while the other uses the periodicity

parameter. For the former, the expressions are

> e , i 2,3, ,N (3. 18)
1 - 1

and

1 - 1

For many instances of the problem, it is possible to approximate

clock time by a stop number. For these cases
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j N K k
Y xP , j - 2,3,..., N (3.20)

-i 3t
t=e. i=1 k=1

insures that the time window constraints are included.

VII. QUALITY 0lF SIRVICE

As above, either clock time or the number of periods may be used

to represent the desired standards specified by Q.. Hence, one could

use either

- ' - T.j < Qj for every jcO (5.21

or

N N K N N K> tx. . - I 7 tx. <Q
i1 t-1 k=l 1,j+n,t . t. .. lit -i t l k i=l t=1 k=l""

for every jcO (3.22

to insure that quality of service is maintained.

VIII. OPERATIONAL CONSTRAINTS

The operational constraint may be expressed by

k

c. . < Dk  k = 1,2,...,K (3.23
i jt ljt xijt - k

Although the above formulation does in fact represent the Pi1)T,

the necessary quadruply scripted variables should be noted. The

i •
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The implication of this fact will become apparent in the next chapter

where discussion of optimal solution techniques will be discussed.

J4



CHAPTER IV

EXACT SOLUTION ALGORITIIMS

It was noted in Chapter 11 that optimal solutions to vehicle

routing problems (VRP's) were difficult to come hy. Because the pickup

and delivery problem (PUDP) is more complex than the VRP, one might

suspect that exact solutions to it would be even more elusive. In many

cases this suspicion is correct. However, for one subclass of the

PUDP, large problems (over 100 stops) are readily solved optimally using

a dynamic programming algorithm.

Other than dynamic programming, the exact solution techniques

detailed earlier for the travelling salesman problem (TSP) and the VRP

are not effective in solving the PUDP. Not all P1JlP insLinces can be

solved by dynamic programming. Consequently, this chapter is devoted

to explaining why the traditionally successful algorithms fail, or are

not effective when applied to the PUDP, and to developing the conditions

and algorithms that allow for optimal solution to relatively large

tI'DP's. A detailed discussion of the multiple vehicle PU)P is deferred

until Chapter VI.

I. INEIF-CTIVI "ILCIINIQUI;S

Integer programming by means of cutting planes, branch and bound

approaches, and l.agrangean techniques, has been used with 'varying

degrees of success for solving the TSP and the V\RP. In addition, a

Benders decomposition approach has been successfully applied to the RP

4(0
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as both a heuristic and an exact solution technique. The complexity

of the constraints renders each of these techniques ineffective When

applied to the PUDP.

Integer Programming

The integer programming (I11) formulations of the PUDP given in

Chapter III are considered as compact as possible. Although the compact

formulation is only of order KN, the number of decisions variables

presents the primary difficulty. At least KN3 (0,1) decision variables

are required.

Consider a hypothetical problem with 15 customers, or 31 stops.

Nearly 30,000 decision variables are required for the single vehicle

version of the problem and more than 100,000 variables are needed if

the customers are to be serviced by four delivery vehicles. For the

TSP, integer programming techniques such as cutting planes and implicit

enumeration generally have performed less efficiently than have others.

Given the large number of decision variables and the suspect efficiency

of cutting planes in general, further pursuit of 1P was not undertaken.

Branch and Bound

Branch and hound techniques are by far the most common type

applied to the TSP and to the VRP. 'ihis is true because relaxations of

the TSP or the VRP, such as the assignment problem, are readily

solvaui, and provide logical branching points. Also, good lower bounds

on the optimal completion1 Of the SubhprohleM Call b readily computed.

" hi .. . . . " - *.. ... . . 1
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Tight bounds and logical branching strategies are not readily

available for the PUDIP. The precedence requirement is the primary

complicating factor. The sequence in which stops are visited is

irrelevant in the TSP, but critical with the PIUDP. Consequently, the

relaxation solution may produce infeasible subtours. Therefore, one

must not only branch to eliminate subtours, but also to achieve

feasibility. Given both subtours and infeasibility, the choice or a

branching rule is not readily apparent. Even if such a rule wtre

readily available, the need to compute tight bounds remains as a

necessary criterion for a good branch and bound algorithm. Such

bounds are not readily available.

The PUI)P is a restriction of the TSP. Therefore, the optimal

solution to the TSI' is a lower bound on the PUIJ)P. Yor noncontrived

problems, we will see that the TsP provides a very poor loer bound.

Consequently, to efficiently solve the PI)' y b ranch and bound, a

relaxation of the 'UDUP is needed that produces bounds better than the

optimal TSP Solution over thc same network. [urthcr, t) e bound must

be easily computed in polynomial time (such a relaxation is referred

to as a "polynomial time relaxation"). The following lcmm;i shows that

such a relaxation probably does not exist.

Lemma 2. Unless P = NP, there does not exist a polynomial time

relaxation of the PUI)I with value 1R which is ireater than or equal to

the optimal TSP relaxation solution value of f for all PUN)I instances.

lI.l. ...
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P roof. Lot P* be thce val1ute of thle opt i lal 1111 SIl) olut ion and

suppose Z * < R < P* for every instance of tile PUllP. Let A be thle

polynomial time al1gor ithin that produces

Consider the fol lowing instance of thle PUDP; oneC vCh c 1 , Ilk

capac ity , operational , t ime window, Or qJualitY cOf Se re CCcrti

other than for stop n and a requirement that all originls be vi sit ed

before time T and all destinations after time T. Origin n and its

corresponding destinat ion 2n ar deie uhta 1 n

C 2 n ='' z 1 T + 1, c 11, = c 1I for all I * c. =C for all I and

c ,2n='. InI effect, stop n and 2n are identical to the depot.

As defined, the POOP reduces to two TSP'1s. One over the n1-I

origins and one over the n-I destinations, Let ci 0 f for allI

PTe, ci. for all i E-0 and j1). Apply A to the result i ng t,

Clearly P* is thle value of the opt ima1 '1 SP :olut ion over the depot

and n-I origins , which i-s a1iso the value of the PUDP sol ut ion. H ence,

Z=RP* from the hypothes;is. But anV [S'could eaIsiy IVfe trans-

formned to such aI PUIIP instance. The1refore, A can be used to solve any)

TSP. Since A is a polynomial tine algori thin, this would imply P = NP.

Consequently, we rejected Z* < < P* and accept thle provisions of the

l emma.

Empirical evidence suggests that obtai ining aI bound better- than thle

TSP bound is difficult toi any instance. of the 1111)1' No wor-kable

bound irg Scheme Was uncovered that Was not also ai 10 Ouer bounld for, thle

11'. 'I hie LI'1 so Ilit ionl obt a ined by Irel a x i rig tire inftegr litY reqO i IenerI~t

coulId he Such a hound, but i s not e',s ii I complirt ab Ie due pri ma ri I \t o thIe
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previously noted number of decision variables required. Given such

loose bounds, any branching tree would clearly become enormous.

Attempted hand solution of a five stop (two origin/destination pair)

problem demonstrated the futility of the branch and bound technique.

Therefore, it is not deemed practical for optimally solving the general

PUDP.

Lagrangean Technique

One of the most powerful techniques for solving the symmetric TSP

was L-.. 1-tree approach of Held and Karp (22,23). The precedence

requirement of the PUDIP can not be accomodated by the 1-tree approach.

The construction of the 1-tree requires the construction of a minimum

spanning tree. The greedy algorithms used for the solution of the

minimum spanning tree problem requires an independence relationship that

is immediately contradicted by the "origin before destination"

constraint.

The result is similar to that cited above. 'herc-as the [SlP is

sequence independent, the PIJDP is sequence dependent. This dependence

is the primary factor precluding or limiting the solution of the P'RI)P

by the 1-tree, branch and hound, and integer programming approaches.

Benders Decompos it ion

'lhe Fisher-Jai kamur algorithm is based on iterating bet ween a

generalized assignment problem (GAP) and a travelling salesman sub-

problem. The objective of the GAP is to optimally assign customers to

vehicles such that vehicle capacity is not exceeded.



With the PUDP, vehicle capacity may not even be a factor. Even if

it were, the capacity limitation affects the problem differently. It

is dependent upon the specific routes followed. Remaining unused

vehicle capacity decreases as an origin is visited and increases as a

destination is visited. Thus, for a given combination of customers, one

or more sequences might cause the capacity limitation to be violated,

while another would he feasible. This can be contrasted to the VP

where one normally considers the vehicle fully loaded when it departs

the depot. In this varying capacity environment, the GAP is

clearly defined. Assigning customers to the correct vehiclev - tic

crux of the multiple vehicle PUJDP . However, no logical formulation of

the customer assignments could he found so that the Benders decomposi-

tion concept could be applied to obtain an exact solution. Chapter VI

specifically addresses the multiple vehicle PUNII'.

II. DYNAMIC PROGRAMW\ING AND PRI-t;hi ENG
CONSTRA I N'IS

Dynamic programming has been used less on the I S' than .some other

techniques. The computer storage requirements, as noted in Chapter If,

are the primary difficulty in using PP to solve the ['SP. Yet dynami c

programming can be adapted to handle the precedence relationshi p of

the PUDP. Further, this can he accompl i shed with a signifi cant

reduction in storage requirements.

The reason for the reduction is that infeasible states ire not

generated. For a 13 node TSI', nearly 25,000 individual storaige locations



are required for the data generated by the recursion equations. For

the PUDP of equal size (six customers plus the depot) and only

precedence constraints binding, less than 3,000 locations are needed.

The next sections explain how this reduction in storage requirements is

possible. Further reductions are pc.'sible for some more heavily con-

strainted instances of the problem. These instances are discussed 1iater

in the chapter.

Induction Schemes

In (2.17), the basic dynamic programming recursion for the

travelling salesman problem was given. The expression for th shoirtcst

partial tour from node 1 to node j that passed through

k  = , . . ik_ 1 }  t .1)

was

fk(J SkQ minimu mlf -( im - i c l j . ( .2
k-Il sk i "

In this form, the recursion can ie thought of as 1-l 'Isrd i nduc tion ill

that the salesman is procceding forward fro:: the starting point to some

intermediate point in his tour. Often. d% nanic programminp is thoilit

of as backward inducti on.

In backward induction, the rt to, '-i ' 1 ii l the - iteSt

partial tour from node J that passes thy l'nh

k N+2-k_ N+l-k .11.3



and return. to tie original ori in, node I "Ie subscript k indicatvs

the total number of nodes, inc 1 Id ig node .I that are included in the

partial tour not including the depot. As decveloped in Chapter III,

N is the total number of distintt nodes. .1athematically, the recursive

expressions are identical. he oly diffeuce is in the definit ion of

Sk .* backward induction is used in the algorithis dveoped to sul\'e

the PUDP. Therefore, all eNxI)l:at ions to follow a ssln))v tOle )a ckwa rd

orientat ion.

Only feasible state vectors need to I1e generateI for he l Il'.

Stop j of expression (4.2) will he referrcd to is tile 1;id. Conse-

quently, if J is the lead and i is one , f the n orl rgin, it ;ust he

true that

(j+n) S1.

if the \ector is to he tca~i!ie. Miii Ii 1.. ii I 1< a ,tstr:r,

it must be true that

( i - n ) / " K

AI so, i f stop i i s an or i gi n, then

S k (+)'



State Vector Repre sntat ion

A binary vector represent ing the lecad uni oned with in appropriate

S kis generated and stored for each f Ivalueti. These vectors are used

L. to identify each 5k and to ident ify the optimal soIlution sequence.

Each vector takes advantage of thle way in which decimal numbers are

stored by a digital computer. If~ i represents any one otf the N

Iii di fferent stop numbers, then thle binary representation of thle decimal

number 2 iIcons ists of one I in the appropriate location and O's in

-all other posit ions of thle word. Suppjose JUS = 4'2,4 ,6 I and thle cormputer

sy*stem employs anl eight hit word. Fi gure 4 depicts the hi nary repr-

sentat ion of the decimal number 12, which is obtinied by

2 1 + -I -I + S + 3 2 7

Conits equ tienttIy, thIte dcc im;l numbeijlt Cr C42 crr1. ) 0 1 dSt0 to te prece o 1C00f S top1)S

number 2, 41 and () inl thle state vector, It is; Cas ii seen t hat all1

puss ible coulhinat ions ofstp have lilliqile hi l'>'r 1eIpreseit at io 011

I-or problems where- N is greaiter th'in th eit 1 , of1 anl i ntecr

word on thle com~puter syst em il n1us0, the :i~eu t i onl i s sepa;)ratecd

nto two (or- m1ore) vectors such that eCich iOrd represent s part ot the

totalI state vector. For exampleJO, suppose N 1.7 and I1 32. ])hen for

given state ,w two %ords , dIT () anld RH'2 C o CIdL be used to

indicaite the state condition forti' S tn o ub)is1 throulgh 31I could

he tracked hy IdlilI 1* and 32 t hroug'h 45 )lo R1 2Hi (01C . e oceti

similarl I CXt ended to IP3 tc , AS )J 5a wti I ge" P~rjIoes.
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least signi ficant

+ sign digit

li 1 01
word: 0,,l 1 0 1 -

S42

Figure 4. Binary represcnt at i)n of the
state vector for stops 2, 4
and 0.
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Storage Requirements

As noted, the number of storage locations required to solve the

PUDP i: less than that for the TSP. 'Fhe feasibility criteria, expressed

by (4.4) through (4.6), decrease tile number of combinations that must

be considered for each lead. This difference can best be visualized by

computing the storage locations required for one step of a sample TSP

and for the related PUI)P.
'.1

Example requirements. Let N = 15 and k = 7. Suppose the lead is

stop number 2, which corresponds to an origin in the POOP with the

corresponding destination being stop number 9. For the TSP, with tile

depot fixed as stop number 1, there are ( =3 1,710 different S7

values to be computed. For the PUI)P, stop number 9 must be included

in all S7 vaIues. Thus, there are five free positions available, which

can be filled with

* 2 origin/destination pairs and 1 destination,

* 1 origin/destination pair and 3 destinations, or

* 5 destinations.

Tle number of combinations for each configuration is

6 ) %l) = 15 • 4 00,

( I = 6 •10 6),

* J5 = ,,

respectively, for a total of only 12 values to he computed. "his

represents more than a tenfold decrease in storage requirements. were
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the lead position a destination, 141 storage locations would be

required. For a problem with N 29, over a hundredfold decrease can

be achieved. However, the growth of storage locations remains

exponential.

Tctal requirements. An upper limit on the total number of storage

locations required of 2n 3n -1 + I is given by Psaraftis (24), where

n is the number of origin/destination pairs. His development of the
.1

states is ditferent, but requires essentially the same number of total

states for the PUDP with only precedence constraints binding. The

inclusion e time window and/or quality of service constraints for some

problem instances reduces storage requirements even further, in

contrast to Psaraftis' development, as will be seen later in this

chapter.

Example Problem

An example problem will be used to explain exactly how the dynami c

programming algorithm developed solves the PUI)T with 1 only prCcdclce

constraints binding. A problem with three customers or origin/desti-

nation pairs will be assumed. The depot is node 1, while the origin/

destination pairs are 2/5, 3/0, and 4/7, respectively. Table 1 dcpicts

the cost matrix for the hypothetical problem. Inconsistent cells,

such as a destination to its corresponding origin, are blacked out to

so indicate. However, any cost could be p1aced in one of these cells,

as the algorithm does not allow for such infeasibilities. Table 2

presents all of the fk (j Sk) values, in the order generated, as well

as the binary identification vectors.
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TABLE 2

RECURSIVE )ATA :OR LXXAMPI.|I IYNAMIC
PROGRAMI NG PROBLIM

fk COUNTtLR BINAR' RITRLSEN'AI ON
VALUE L-AI) VECTOR 8-7-0-5-4-3-2-1

k=2 8 2 215 ) )t I 1 0
10 3 316 0 0 1 o ( 1 U )

1 4 417 0 1 0 1 U U U
9 5 516 0 0 1 1 S 6 ) (
9 5 517 01 0 1 ) (
7 6 6).5 0 U) 1 1 o U U
1 6 617 () I I ) ( 0 ) U )
8 7 715 0 1 0 1 0 ( 0 (I
2 7 710 0 1 1 C U ( (0 0 )

k=3 7 2 2-50 ) 0 I I U U I U11 2 21 57 C) I 0 1 (U C) I t)

9 3 3165 0 0 1 1 0 1 o C)
9 3 3167 () I1 1) I (U
8 4 4 75 0 1 () I I () ()
2 4 1 17o I H 0C 0)

10 3 5136 ( 1 t 1 1 (U U
9 5 5)47 C 1 ) I I (
8 5 5)67 I) 1 1 () ( (C C)
8 6 6125 (l ( 1 1 U U
9 6 6147 I I (C 1 (I
8 6 6157 (C 1 1 1 U (C(C

11 7 7 125 0 1 () (() 1 (1
21 7 7136 o) 1 1 I) U 1 C)

7 7 7156 ( 1 1 1 (( U ) C)

k=4 1-1 2 21530 I) C) I I )( 1 1 U
17 2 215.7 ( 1 U I I I
8 2 2 (567 0 1 I I . (C

12 3625 1 1 0 1 1 (C
1 3 31).17 0 1 1 t) I 1 )0

8 3 o057 0 1 1 1 () I ))
11 .1 1",). 0 1 0 1 I I )
15 ,4 41730 0 1 1 0 1 1 (o ()

7 4 4)750 0 1 1 1 1 ) ) 
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TABLE 2 (continued)

fk COUNTER B I NARY REPRESENTATON

VALUE LEAD VECTOR 8-7-6-5-4-3-2-1

k=4 9 5 51367 0 1 1 1 0 1 0 0
10 5 5(476 0 1 1 1 1 0 0 0
11 6 61257 0 1 1 1 0 0 1 0
16 6 61475 0 1 1 1 1 0 0 0
8 7 712% 0 1 1 1 o 0 1 0

18 7 71365 0 1 1 1 0 1 0 0

k=5 13 2 215367 0 1 1 1 0 1 1 0
16 2 215476 0 1 1 1 1 0 1 0
13 3 316257 0 1 1 1 0 1 1 0
10 3 36,475 0 1 1 1 1 1 0 0

8 4 417256 0 1 1 1 1 0 1 0
12 4 417365 0 1 1 1 1 1 o 0
13 5 513617 0 1 1 1 1 1 0 0
17 6 612547 0 1 1 1 1 0 1 (
17 7 712536 0 1 1 1 0 1 1 0

k=6 15 2 2(53647 0 1 1 1 1 1 1 0
19 3 362547 0 1 1 1 1 1 1 0
17 ,4 4(72536 0 1 1 1 1 1 1 0

k=7 17 1 1(253647 0 1 1 1 1 1 1 1

Optimal Solutions: 1-2-3-5-4-7-6-1 and
1-4-7-2-3-5-6-1

ol
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4 The algorithm used actually generates a vector of length k that is

incremented to obtain each feasible state, like a counter. Each element

of the k-vector is then used to compute the binary representation, which

is stored for each fk value. If the lead position is an origin, the

next position in the k-vector is automatically set to that origin's

corresponding destination. Consequently, only k-2 positions would

require incrementing. Further, any time one of the elements incremented

is an origin, the next element is similarly set to its corresponding

destination. Thus, for k = 5 the first counter vector is given in

Table 2 as

2 15367.

Origin 2 as the lead automatically sets the next position to 2's

destination, 5. Origin 3 automatically sets the position on its right

to its destination, 6. Each time one element of the k-vector is

incremented, all elements to the right of it are initialized to their

lowest feasible node number. Then the ve,-or is incremented like a

counter, with the right most element incremented first. Once completed,

each element of the k-vector is then used to compute the binary represen-

tation, which is stored for each fk value. The binary representation

conveys only the identity of the nodes, not the sequence in which they

were generated.

F2(jl 'N. The algorithm begins by computing f2(JliN) Recal I nug

that the algorithm uses backward recursion , there arC only two CL)Ilfigua-a -

tion patterns possible:

40



an origin/destination pair with return to the depot, and

two destinations with return to the depot.

In the latter case, any destination could serve as the lead, while in

the former, only an origin could. The computation in either case is

straightforward and will not be elaborated on further.

f 3 (j S3). Beginning with j, or the lead, equal to the first origin,

node 2, we generate all possible S3 combinations. Because node 2 is an

origin, node S must be included, leaving only one free position in S 3 .

Clearly, this node must be a destination. Beginning with the lowest

numbered destination node, not identical to any destination already

fixed, each state vector is incrementally generated. Lxpression (4.2)

and the previously generated data are tCn used to compute each f3

value. Once all t3 combinations are generated for node 2, the lead s

incremnted and t ie procedUre repeated.

When the lead is incremented to node number 5, th: first destinat ion

node, there are two free positions in S, that can be filled by:

• an origin/destination pair, or

. the remaining two destinations.

In the former case, an origin requires its corresponding destination.

Thus, when the origin position in the state vector is being incremented,

there is no free position left in Si. For the latter, one free positi on

rema i ns.

f (j s.). The procedure for f,, valties is the logical extension of

that for fj values. With aIia origin as a load, the two free posit )ll

in S1, can be filled by cither:
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* an origin/destination pair, or

* two destinations.

Similarly, when the lead position is a destination, an origin/destination

pair with one destination is the only possible combination. A

destination followed by three destinations is impossible since there are

only three total destinations in the problem.

Remaining fk(jlSk)' s . The same process is repeated for fr and f

values. For f 6 values, only origins are legitimate lead values,

followed by all other node numbers. The optimal solution value is

obtained by" solving

f 7 (l 2,3,..., 7) = min [f6(i Is6 - + cm I i ii 1 11 t "

Because only origins can be in the lead poq it inl in f, ,,ne i; assured

that i IlO and that the route begins Ieg itimlateL Olne can then idelt 1'

an optimal solution with value 17. One such s a L,: is l- -3-- I 1

Obtaining tile solution. Using the t' alues, tile led node l",

that value, the binary representation and the orim nii., coat d+itl, til-

solution can be constructed one node ;it a time. Ior exim plc, tL' fe

value of 17 minus the cost from the depot to nodc 2, 1 hich is t,

equals the fr value of 15 associated %with node 2 is a lead. I Ill IUrc,

this value of 15 minus the cost from node 2 to 3 of 5 equals the f,

value of 10 associated with node 3 as the lead. 1Iis ass ignm:ent is

legitimate since the ident ific ation vectors i rdicate thalt no prekia lsI'

4I
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scheduled stops (in this case node 2) were used to obtain the fk value.

The process continues until all stops are sequenced. The tour is then

completed by indicating the return to the depot.

Computational Results

With only the precedence constraints binding, the exponential

growth of the required storage locations limits the size of problem

that can be practically solved. 'Fable 3 summarizes results for four

small problems. All computer runs were made on the University of

Tennessee Computing Center's IBM 370/3031 computer system. Cost matrix

data were generated randomly. Both x and y graph coordinates between

0 and 99 were generated for each point. Interpoint distances were then

computed using the rectilinear metric, i.e.

C(i,j) x i  - xj + ' i  - ).1 ,4.9)

where x. is the x coordinate of the ith point, etc. The data generation

technique was the same for all problems examined throughout this

di ssertat ion. All of the algori thins developed in this and the next two

chapters are independent of the manner in which the cost matrix is

obtained. The rectilinear metric was selected only hecuase it

facilitated hand computations during the early stages of algorithm

development. Any metric could he used in place of the rectilinear one.
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ADD IIONA L CONSIRA INTS

The discussion in the last sect ion deal t only with binding

precedence constraints. Inl some real1 world aipp ii t ions of the pickup

and del ivery probl em, manY other const ra jajrs,, as. suggested eairlier,

may be present . InI Chapter 1II , two d ifferen t aipproaches for formul at ing

the fully constra ined version of the PUl)1 were presented. One empi uyed

the use of clock time, while tile other used the Stop numl111hr Of a

customer in the optimal sequence. '[his latter approach is idlea, I

suited to solution by dynamic programmwinig.

Lead Position [:e.sibl~Ii-tyv

Position identification. Thei first origin vi si ted after the

vehicle leaves the depot is considered to be the t i rst s top nnc

ConIsequenCtlIy, the last dOSt iMat 1011 t heC vehle QV iS it S Ie fore returIng

to the depot is; designated stop number, N-1, lwith all othcr o in ;nnid

destinations be in, rig sequciccd s omewhere in bettvcn IirIll t hi '

chapter it was noted that thle subhscript k onl t he f midicated the

number of nIodes ()] ous t0MvrS inl the pant i a toll] froml node J to the

depot . Let -k repr-esenlt the Stop nlumber a~~ tdwith k. [hlen thle

stop number cahe founid 1).

k = N-k, k .. ,; ..... - I



I cas i bi 1 ite NSet. Ile d\nam I c pirag iami i fug a 1. iOI t hmIn ~il" I v

dese i Lecd procced ed by fiirs t f ji xi g thle I caLl ens tame r , and tl hen

generating all combinations of' susqe t a))os . however, %shen con-

st rain ts ot her than preccedence r-eq i rements -J- I p -escUnt , it 5 i 1 c

that riot III customer-s Call feasihle b( aIs'i Iid to a en la

position. Thrfrthere is NO nleed to genera'te Isb jc

cus tolmer camh i nat ions , nior to store~ an Y da are I t c to a ci>L,

comb inat ions. Let

U. ={j is a;I Cea S l)l leQIad far II

Statec vec toris w ill be generza ted ol ytar i- J

Tlifie w i ndo s .Inl ai~der far thle cam I elmeut ofA to n1ot he 'tA

Coar all1 7 rk,a;It lea 1St 0 1)C 0 f10 th c 0toe 11 rIeI-gn LIi IU.cIments uSI t I Iv I c a InT

earl i cr than (NIlJ requL i I-CHWvut or' iot I later tha 11; Mi qnIli remen~clt

or- Lath. The) mare- in11teet c 1 2 1 ,I scu, inl ter'ms ot sla (t iIl h\d' In!-I]

p)i-og ramm i ng ,i s wh en eaic h cuks tomer'Is irejiCeMents '; x 1 lye t Ie l'IC% 11

which it is assumed can he deti ned Lv Stop niL'> heit'cI

are~ present t0r aIl 1CLIastamerC requik lt,cmets, thle ct J. iscli'

defined for- all --k, :jilL tht- total li: herii4 ij ll t 1 ions ergi red

for the taitc iiid h~iI\pcciitt ml \L 11 K I'VkhILL'. I pi I I.\

C ign i t, i canit i s tha l i i ot I' It a lie r 11 l iw ' Ii c oi t I-I i fit S dI I a. I so

de f i nabi I c Iin t li-ms of t t rie \s I nd k,,i



lianidl n Other Constralints

The presence of NEl or NHA t imes w i 11 be ISSTIled for it 1 CaSt oneC

portion (either the orig in or the (lest inat ion) Of 3 Cu~stomrrsrr' equi re-

ment . One poinlt in1 t iuuie 1s all that is nelcessary to fux dlel i very

wiiidowss, a,; expl ai ned belo0W, tor serv ic ing bo0th the customer' s oiini

and destination. Ini many cases, this onle point would be a NLT time

for del i verY to the dest inat ion. For e~ise of explanation, thle dial -a-

ride problemt wil 11 e Used. IloweCVer , any PUNbi for tli ich the apprope i ate

Z1S SuLIMt 10 115 hol01d C oulId i- e rti h s t i t uited e t i a IIv a s well.

Qua i t y o)f serv i ce. Let Q repee sen t thle quli t y o f serv i cf tr

thle dial -a -r ide serv ice p robl1em. Q i s specii Ied by the prov ider ha sed

Onl hlis _stanldards. It represenlts tilie MAXIU xi mum nuube of stops. before' aI

gi ven cus;tomer rech:les hii S deCst illnat ioul . ton1Vee'SeI> , f veiI A reqjui rekd

deIi ve ry t i me, represeiited by ai speci tic stop niwiurur, that t ime minuis

Q rep resenlt s thle earlI i est t imei tha t a cus tome r c ouI l be p)i ckecd up alt

his on in. filhe uise ,f' stop niumbers to rep resen-It tim i~ s abso 1 It e 1

nieces sa ry. iionsuqieirt I ,', thle d i rec t t ravelI t ie bw etween tw o 0 lit s

is takeri to be on( stop, eidls of tile ilctlli I clock timei reqrui red.

Supp) se a clistovrer Imst be at Iris (lestinat ion bY t op I . InI this cases,

thle NiLl foi- tieeito l dest i nat ionl is I. lie NHI timei toe the

coriespond in iiorFfiin i,, 1-1I s ineec it taikes ai in inriie of t 0 pe'r iodx to

trav.el from a ciistoiocr 's on inl to lis dc'st i 11.1t i onl. Sinrce Qis thle

manxi mum d t fe rcrce betwen i hheir al crist orer no' t be i t hn s deIs t i naJt i n1

:!I( whcen a cristo urrc i s nc t IvIl picked tipl, thcL e.r1 i eist t imer that thle
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S cus tomer coul1d he picked up woul1d he T-Q. 1huLs , l-Q represents the NI:I

time for the customer' s origin. A NLT Va IL 0c f' T-Q+1 for the customer's

destination is olbtained since there is a minimum of a one stop travel

time. Suppose Q=S and T=18 for a given customer. [hen the NI[ and NIA

times for that customer',; destination would 1)0 18-5< 1=14 and 18. I-or

the cuIstomer's origin, these times would be 1-13and 18-1=17 ,

rcspect ivelyv. The o cera 11 time window associated with th is cus tomer

would thus he stop niumbers 13 through 18, inc lus ive. In addition,

there would he a ivindow, of 1.3 through 17 inclusivye for his origili II'

14-18 iniclusive for his destination. Any aittempt to provide serv i k: it

s to1) numbers out side thlesec windows VOU ILI reSii it in) an in teas ibhi

SOILution.

If one wishecs to avoid lung wait iug periods u1ponl urr xiu at his

destination, a maximum wait inrg parameter, M, Coold~ he uised So thalt the

,Nl:I time tor arrival at the dles;tinationl could he Computed as *1-M.

Continuing the nume11rical examlel)( of the previouis paarpif M=51, the

earl iest tine, ("topl iimlcr I that the cus;tomer coulld arrivec at his

dlest irirtion would he 18-3 I.S. Ille overall ar1id origill timei window's

wool d rena iii unchanged. hlowuver , the deQSt i a t i on timeI wi udow woo111d

become stops 1 5 t hrourgh 1 8 i nc lusivye. Bot h Q arid Mi weCre used for

computat i uria I exp~eriment ait i Or), wh11iCh i I I bW prICSCTrt ed Ilater i n th is

chalpter.

Lapa it;curVls tii lt S. lu r the di a I-al-rde prlll) , the Caac it

con;t r-aimt i., mi ' er1IIT becauJ1se echWl pers orr -:ill be thought of' as one ott it.



70

Therefore, one must only be concerned that the number of people in the

vehicle at any time does not exceed the vehicle's capacity. This can

be accommodated by using a not unrealistic assumption that the vehicle

capacity is greater than or equal to Q. Since Q represents the maximum

number of stops before a customer reaches his destination, and since

each customer represents a unique stop, the vehicle cpapcity can never

be exceeded.

The assertion that the needed assumption is not unreal is tic can

be argued in terms of a hypothetical situation. Suppose our dial-a-

ride service provides transportation services to handicapped people.

The van to be used can hold at most seven passengers. Fifteen requests

for service have been received. Each request corresponds to a pickup

at an origin and delivery to a dcstinatior,. Hence, our driver has 3(

specific stops to make. Given that the passengers are handicapped and

require assistance entering and leaving the vehicle, we suppose that

the average time between any two stops in an optimal sequence is

15 minutes. lhen one physical location corresponds to more than one

stop, the 15 minute average should not be materially affected by the

increased time required to provide ass istance to more than one customer.

These numbers are arbitrary, but do lead to a convenient eight hour

workday for the driver.

The vehicle's capacity could not be exceeded unless at least one

person were requiredl to ride for two or more hours to arrire at his

destination. Note that such an ceventualitv is neces sary but not

necessarily sufficient for vehicle capacitv to be exceeded. iwo hours



appears excessive in terms of the quality of service that any

organization providing dial-a-ride service would provide. Consequently,

the assumption is judged not unrealistic.

Storage Requi rements

Reduction based on lead. By using the set .1 , as defined by

expression (4.11), the storage requirements for the state and repre-

sentation vectors can be reduced. For example, if for each value of

7 k, only 30% of the j are included in J,,,, then the total storage

required is only 300 of that required for the unconstrained instance.

This figure makes no assumptions about the feasibility of each "Sk"

Further reductions are possible when this is considered.

Feasible elements in Sk. lhe sets Sk represent the customers %,ho

are served subsequent to the lead stop in a partial tour. For most

values of k, not all stops can feasibly be included in SK . For exa::p c,

any customer j, either an origin or a destination, may have an ear iest

service time ej and a latest service time defined. If

'< k 4.12)

cannot feasibly be contained in Sk. Let

k = {jV1', _ Ilk1  I.

The number of fk values is primarily determined by the number of

combinations in Sk, which is determined by the nmbnter of customers to

At M i mi.



be taken over the k-1 remaining positions. From expressions (4. 12) and

(4.13) it must be the case that

Of => S (4.14

k

The reduction from (4.14) in the number of customers that can be

included in Sk produces a marked decrease in storage requirements.

Specific examples are presented below. However, even further savings

in storage and directly related computational effort can be achieved.

Required elements in Sk. While some customers can not be included

in Sk, it is often true that others must be if the final tour is to be

feasible, regardless of partial tour feasibility. Consider any customer

, either an origin or a destination, where

ej > 7k (4. 15)

If customer j is not included in Sk, there can be no feasible completion

of the total tour, since such a completion would require j to be

sequenced before Trk, in violation of (4.15). It should be noted that

the partial tour by itself might %ell be feasible. Let

V> 7. (4.15.1
k

and define

.. 1k = Lijj((iI1 k V ) IiI , k } (.16()

k ik rk

Then F represents all customers for which a decision can be made as to
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whether or not they are to be inclutded in a given partial1 tour. Us in1g

tile symbolI to represent the set c:ard inal ity, the upper limit onl the

number of ftk storage locations for a given value of' k is given by

k (4.17
k

The precedence requirements make the actual requircrements s igniti canlt lv

l ess.

Sample storage requirements. Consider a travellIing salesmanl

problem, a constrained and an unconstrained dial-a-ride service prob~lem

of size N= 13. Suppose k=7 , which represents thle hal fway poinit in thle

recursions. [ur11therl suppIose that for the constra;inedL prIobleml tile set

coni ss o to origins and three destinat ions, the set H_.

consists of' one origin and one destination in the form of one pair,

Thus, 1:T consists of three origins and fouir dest inat ions. lab Ie 4

shows the storage requLi reMentS to compute all feasible f, values for all

three problems. The 45 actual locations- requi red for- the oils t ra i nle,

problem is only- 60% of thle l imit of 75 computed by expression (4. 17).

TAB LE -4

EXAMPLE fk S(WRA(; RlEQUII RLM!:S [OR II INLAi RLLAFI)
PROBILMNS K 1111 N= 13 and k= 7

Travell Iinfg Sa Ilesm:1n Ulncoilst ra ined Co 11S 11' rinedL'k
ProblIem IIP'IW

5,541 S76 ,
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As will be seen below, this efficient method of state generation and

storage allows for the solution of much larger problems than previously

solved.

Existence of a Feasible Solution

Feasibility question. When all of the previously suggested problem

constraints are present, there is no guarantee that a feasible solution

even exists. The more heavily constrained a given problem is, the

V; greater the probability that a feasible solution does not exist. The

following lemma examines the feasibility question for one instance of

the PUDP where capacity constraints are not binding, or where the

capacity arguments suggested earlier in this chapter are applicable.

Suppose that for each customer with origin i and corresponding

destination j, all relevant constraints can be expressed in terms of

the stop numbers on the vehicle's route. Further suppose that each

customer has a specified stop number T represent i n: tle NIA' tllc

for delivery to the destination. The latest ti me the corresponding

origin could feasibly be visited is T j-I since at least one time criod

is required to travel between any two points. C(onsidCr a sol ltiOn P

generated by taking each required stop in a nondecreasing ordering of

the not later than times. For each customer, there arc two required

stops: one for the origin and one for tile destination. III such all

ordering, a customer's destination would al\wavs follow its corre pond i ng

origin since 2. = T > T-I = O. conseqtlent I'., P wou ald "I I sat i sfy
3 J ruee odhvs

thle precedence requ iremnt of the PIMPW.
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The construction of P can be demonstrated by the following simple

example. Suppose there are three customers with NLT times for their

destinations of 4, 5 and 8 for D1 (destination 1), 1)2, and l), respec-

tively. Then the NLT times for the corresponding origins are 3, 4, and

7 for 01, 02 and 03. Then P would be the sequence:

'[epot-0 1 (3)-0 2 (4)-I)1 (4)-D(5)-03 (7)-1D3 (8) -Depot,

where the numbers in parenthesis are the NLT values.

Lemma 3. Given a not later than time for each delivery, construct

P as shown above. Suppose Q (the quality of service paramenter) is

defined to be the maximum possible number of stops before a customer

reaches his destination. Thus, for a customer with origin i, destination

j and Tj, the not earlier than times are computed to be T j- Q and 'l -Q+ I

respectively (discussed earlier on p. 68). Then, there exists at least

one feasible solution if and only if P is feasible. To be feasible a

point must be sequenced within its time window: "1j-Q through Vl-l

inclusive for the origin associated with destination j and 1j-Q*I

through T1 inclusive for 9.

Proof. 'File if part is obvious. For the only if part, suppose P

is not feasible. Let P* be any other sequence. It will be shown that

P* cannot be feasible. Let h represent the number of stops until the

first infeasible assignment in 1P is encountered. L.et ) represent that

infeasible assignment. For example, consider the following P:

eZ
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Dco-1 O2 1 03 ~2 93 ot

.1

If the third stop, which is I)I is infeasible, then h=3 and j=D 1 . lesc

are two cases to be considered, a point sequenced either too early or

too late.

Case 1; e- > h. In this case, the point sequenced, either an

origin or a destination, has been sequenced too early. In effect, it

will be shown that to move j later in the tour requires placing another

point k in spot h which has ek > eh.

Let h' be the first stop for which J could possibly be feasibly

sequenced in P*. Clearly, h' > h since ej > h in P. Hence, in P*

h'-1 points must be sequenced before j. Let

.ti { lei  < ej} (4.1)

Because

ei= .i Q+l, i = 1,2 ...... , (.19

it must be true that e i < ei if and only if iherefore, it

follows that

Jill < h (1 2 o)

where " represent the cardinality of the set. here this not true, J

would have occupied a later position in 1'. lor P* to be feasible, it

must be true that



i.e., therc are enough points to f~ill thle first li -I pos it ions.

Equation (4.21), in turn, implies

hi > h'-1 (.1 22j

or

h > h' (4.23

which is a contradiction. 1cnce, if cj > h, there is no possible

feasible sequence.

Case 2; j < h. For the second case, the point has heen sequenced

too late. To be feasible, it must be sequenced earlier. However, to

place j earlier in the tour, another point k which has k i put into

position h.

Let h' be the last possible stop for which .i could feasibly he

sequenced in PI*, i.e. , h . Using an argument which is the reverse

of Case 1, h' < h and h' I stops must be sequenced before stop h

(customer j) in P. Let

*<

It* is the set of customers that must he serviced not later than .

Since I' is ordered in nondecreasing ., it must be true that

Il~ _* I i> h , (4._5



which in turn implies

f> ill* > h' > h' - I

Consetientlv, P* cannot be feasible since there are more custof

must he scheduIl ed than there are available positions. In othei

i f < 11, there is no possible feasible sequence.

Therefore, one concludes that if P is not feasible, no oti

permutation can be feasible, and the Lemma is proved.

: Fcasi1)i it Y in general. If the conditions of Lemnm 3 doI

checking for feasibility is much more complicated. For exmpl,

varies per customer requi rement it may be the case that P, is

developed using the procedure of Lemma 3, is infeasihle, but t

slight modification produces a feasible tour. For exa:p]c, co

the data in Table 5. An ordering P nI ould ne

which is infeasible since 01, the first customer's origii, is

first, thus, violating l = 2. But

1-0 -0 () --0 -I 2 -L)- 12 1 1 3 2

is feasible. Since the dynamic pro.ralmmi in, ;li-orithm 1 only ge

feasible state vectors, infteasibilit.," is rCogniZed he

someni 1 wluc of k. loweve r, for the toUr con strt ion heri st

discussed in the next chapter, a simple technique for iusuriln

feasibility is most important.
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TABLE 7

SAMPLE COMPUTATIONAL REQUIREMENT FOR EXACT

SOLUTION BY DYNAMIC PROGRAMMING

N Q M STORAGE REQUIRED RUN TIME
(SEC)

31 5 3 174 L.280

31 5 5 227 1.433

31 7 4 453 1.706

31 11 6 784 3.037

31 11 11 867 3.623

91 7 4 1,328 1.631
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total storage required is four times the figure presented. The

additional storage is for the three representation vectors, one for

stops 1-31, another for stops 32-62 and the last for stops 63-91. The

run time is the average for 10 continuous trials.

Analysis of results. No certain explanation can be offered as to

why the 91 stop problem was solved more quickly than was the similar 31

41 stop problem. Perhaps the answer relates to the number of other jobs

in the time sharing system at the two different times these problems

were solved. Notwithstanding, 91 stop problems were solved in less than

two seconds, requiring allocation of less than 150k bytes of total

computer storage for compilation, execution and data. One easily con-

cludes that any practical sized single vehicle PUDP for which the

simplifying assumptions - time windows and reasonable quality of service

parameter - apply can be optimally solved very efficiently. The single

vehicle dial-a-ride service problem Appears to be an excellent practical

* problem for which dynamic programming could be used to obtain the exact

routing provided that computer facilities were available to the agency

providing the service.

IV. USES OF OPTIML SOLUTIONS

Despite these impressive results, dynamic programming is not

practical for solving the multiple vehicle PUDP. The problem is that

the number of states generated cannot be limited to the extent they can

with the single vehicle case. One can no longer require customers to be

AL -.



84

on one specific vehicle. They could just as easily be assigned to

another vehicle in the optimal solution. Consequently, the cardinality

of F rfk, defined by expression (4.16), increases significantly, which

translates into a tremendous increase in the number of fk storage

locations for a given value of k. Results pertaining to the multiple

vehicle PUDP are contained in Chapter VI.

Since the PUDP has not been studied in the literature, with the

exception of the few small problems Psarftis presents, there are no

standard test problems in the literature against which to compare

various heuristics. The dial-a-ride service problem, optimally solved

by the dynamic programming algorithm, provides the means to accurately

and precisely test the numerous heuristics to be discussed in the next

chapter. Having the exact solution is extremely valuable, since the

results indicate that many of the most popular heuristics for the TSP1

and the VRP perform very poorly.

V. LIMITATIONS ON DP SOLUTIONS

The results detailed above were attainable because the constraints

could somehow be expressed as a function of stop numbers. This allowed

for only combinations of customers in a partial tour to be considered.

However, if the exact permutation of the members of a partial tour must

be known to assure that constraints are not violated, then dynamic

programming will not work. For example, if quantities to be moved are

not unity, it is easy to create an instance where one permutation of

stops is feasible, while another permutation of the same stops is

t1

I4
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infeasible due to vehicle capacity being exceeded. The same is true of

time window constraints if stop numbers cannot be assumed to be good

enough approximations. Similar instances of infeasibility can be easily

created for the quality of service requirement and the operational con-

straints. Consequently, obtaining optimal solutions appear feasible for

only a rather restricted instrance of the PIDP. For the other instances

heuristic solutions must suffice, since no exact solution technique has

yet been found that is effective.

!E



CHAPTER V

SINGLE VEHICLE HEURISTICS

Not all instances of the pickup and delivery problem (PUDP) appear

to be able to be solved optimally. For those instances which cannot be,

hueristic solutions must suffice. This necessity for reliance on

heuristics was earlier noted for many instances of the travelling sales-

man and vehicle routing problems as well. In this chapter, therefore,

heuristic solutions of the single vehicle PUDP are investigated.

I. OVERVIEW OF HEURISTIC DEVELOPMENT

Type of Instances Studied

Some instances of the PUDP cai be efficiently solved optimally as

shown in the last chapter. These instances require that all time

related constraints be expressed in terms of stop numbers, where the

stop number refers to the number of points actually visited in any par-

tial tour. Capacity must not be a factor, or the other constraints must

be such that customers do not remain on the vehicle long enough for the

capacity of the vehicle to be exceeded. When these conditions hold,

dynamic programming can be used to obtain the exact solution. Very

large single vehicle dial-a-ride service problems can be solved when any

practical quality of service parameter, Q, is used.

To say that one heuristic produces solutions that are on average so

many percentage points better than another heuristic is, by itself, not

too meaningful. If both heuristics produce results that are over twice

86
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optimal, neither heuristic is very good. However, to say that a

heuristic on average produces solutions within so many percentage points

of optimal is meaningful. It provides a precise measure of how well a

heuristic performs. For this reason, the problem instances studied in

this chapter are the same as those studied in the last chapter. This

allows for precise as well as relative evaluation of the heuristics.

Specific Heuristics Studied

Each of the heuristics to be discussed falls into one of the

three broad classes: tour construction, tour improvement or composite.

Because the Clarke-Wright savings technique dominates the commercially

available vehicle routing packages, it was the logical first candidate

for study. Other tour construction algorithms studied include the

greedy approach and an insertion technique. The 3-optimal approach is

the primary tour improvement heuristic investigated, while each of the

tour construction heuristics is combined with the 3-optimal algorithm

to obtain a composite solution.

Each heuristic algorithm is first discussed individually, except

for the composite algorithms which require only explanation of the

individual components. The algorithms developed are not straightforward

extensions of those used on either the travelling salesman problem or

the vehicle routing problem. As was the case with many of the exact

solution techniques, the precedence relationship is the complicating

factor. Computational results are finally presented which compare the

performances of each of the various heuristics. The results clearly
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show that tour construction heuristics do not, in general, produce good

results. Again, the precedence relationship is the primary culprit.

I|
II. CLARKE-WRIGHT HEURISTIC

Starting Point Procedures

The basic Clarke-Wright savings model was developed in Chapter II.

For the pickup and delivery problem, the depot or dispatch point is

taken to be the origin, and the first two points are taken to be those

with the largest savings value as computed by

si. = cli +c 'I -cij (5.1)

which can feasibly be linked together. When time windows are present,

as in a dial-a-ride situation, many points cannot be linked due to the

time requirements involved.

Criteria for linking. Two points can be linked only if their time

windows touch or overlap. It is important to remember that all con-

straints are being expressed in terms of a vehicle's sequence number.

Thus, an example time window of 4 through 7 inclusive for a given point,

representing a customer's origin or destination, would require the

vehicle to visit that point on its 4 th
, 

5th
, 6th or 7th stop after

leaving the depot. Let

Sk = {stop numbers in k's time window) ,

k = 2,3,...,N. (5.2)
Tdl

Then points i and j can only be linked if the set
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L.. = Si U S (5.3)

contains all of the stop numbers between the lowest and the highest

values. For example, suppose Si = {2,3,41 and S = {6,7,8}. Then

L j = {2,3,4,6,7,8). Because stop 5 t Lij, points i and j cannot be

linked. If i were sequenced at its latest possible time 4, j would have

a sequence time of 5 which is one stop earlier than its earliest time.

Similarly, sequencing j at its earliest time of 6 would require i to be

sequenced at 5, one stop beyond its latest time. Since the Clarke-

Wright heuristic does not allow for the breaking of a link once formed,

the linking of i to j would preclude a feasible tour from ever being

constructed. Further, if

S. f s. = 0 (5.4)1 J

and all elements of Si are less than those of S., then i must be linked

to j in a forward manner, i.e.,

1 - i j - 1 (5.5)

in the initial partial tour. The same is true if the roles of i and j

are reversed. Suppose S. {2,3,4} and S. = f5,6,71. Then Sin Sj =0.

Clearly any tour having i and j feasibly linked would require i in the

4th position and j in the 5th. Any other linking would violate one of

the time windows.

For other cases, one has a choice. Suppose S. = (2,3,4,5,6,7} and

S. = {4,5,6,7,8,91. If i precedes j, then point i can feasibly occupy
.1 •,

i.



90

position 3, 4, 5, 6, 7 or 8 in a complete tour. However, letting j

precede i limits i to occupy only positions 5, 6, or 7. Hence, i

preceding j allows greater flexibility in subsequent construction of

the solution. Therefore, if 9i < j, hlien the algorithm hras i preceding

j in the initial partial tour.

Initial feasibility. Although the above conditions are necessary

for feasibility, they are not sufficient to insure that a feasible tour

can be constructed. If linking i and j precludes the subsequent con-

struction of a feasible tour, then i and j cannot be linked. Consider

a simple example, with partial data as given in Table 8. Linking i and

j appears feasible with i in the stop 5 position and j in the stop 6

position. However, with i and j in these positions, point b cannot be

feasibly sequenced. Yet the sequenced

l-x-x-x-i-b-j-x-...-l (5.6)

is feasible with respect to i, j and b. The x's represent arbitrary

other points.

Therefore, in selecting the first two points to be linked, it is

necessary to insure that a feasible final tour can be constructed. When

the constraints are relatively tight, many infeasible linkings are

likely to have higher savings values than those of the points that can

be feasibly linked. To ignore feasibility during the construction

process would almost always result in an infeasible solution. Even if

one had a 90% chance of selecting a feasible linking at each stage, for
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TABLE 8

EXAMPLE DATA TO DEMONSTRATE THE PROBLEMS
ASSOCIATED WITH LINKING FEASIBILITY

POINT NET NLT

i 4 5

b 5 6

j 6 7
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a problem with 15 customers (30 origin/destination points) the

probability of not selecting an infeasible linking (without insuring

feasibility) is less than 5%. Further, insuring a feasible linking is

not sufficient to guarantee a feasible final tour as discussed above.

Consequently, the probability of a feasible final tour (without insuring

feasibility) is near zero.

The checking process is complicated and must be accomplished at

each step before a new point is added to the solution. Assuring a

feasible final tour is necessary if the heuristic is to have practical

value. Infeasible solutions are considered worthless. The detailed

explanation of this procedure will be deferred until later in this

section.

Adding Additional Points

Recall that the Clarke-Wright algorithm adds new points, one at a

time, to an existing partial tour. The new point added is always

connected to the origin and one end of the partial tour. Once two

points are linked, they remain linked. For ease of explanation, at any

step in the process, those points which are already in the partial tour

will be referred to as in the assigned set, A. The order in the

assigned set will be that of the partial tour. The point being con-

sidered for addition to the partial tour is the candidate. The candi-

date can be inserted either in front of or behind the assigned set,

provided such an insertion can lead to a feasible final tour. Therefore,
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at most two feasible candidates are generated at each step of the

iteration, a front end candidate and a rear end candidate. It is

possible that one, but not both, of these candidates will not exist,

especially near the end of the construction. The partial tour is

expanded by adding to the tour the candidate which has the largest

savings. In this sense, the heuristic is applied exactly in the same

manner for the PUDP as it is for the TSP or the VRP.

Front end candidate. There are three possible ways that new point

i could be the front end candidate, disregarding feasibility:

* i is an unassigned origin, whose corresponding destination

is already sequenced.

* i is an unassigned origin as is its corresponding destination,

but the assigned set is small enough that the destination can

be sequenced later.

• i is an unassigned destination whose origin has not yet been

sequenced.

Checking feasibility is expensive in terms of computational effort.

However, simple checks can sometimes eliminate a possible candidate

which passes the above criteria and has a greater savings value than the

present incumbant. These checks are based on tile earliest time that

point i can be served (ei) and the latest time that it can be served

(Zi). Let i he the candidate and j the first element of the ordered set

A, which implies that i would directly precede j. If either

'i 
<  ej - 1 (5.7)

! • d •
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or

ei > _ (5.8)

hold, then i is not feasible in the proposed partial tour, and can be

eliminated from further consideration. Otherwise, the more complicated

feasibility check is used.

Expressions (5.7) and (5.8) can be illustrated with two simple

examples. First, suppose Zi = 3 and ej = 5 so that (5.7) holds. If i

is placed in position 3, j must be in position 4, which violates ej = S.

If j holds position S, i must be in position 4, which violates Zi = 3.

Second, suppose e i = kj = 4. Then i in position 4 requires j in 5,

violating Zj = 4, while j in position 4 requires i in 3, violating

ei=4.

Rear end candidate. There are three possible ways that point i

could be a rear end candidate:

* i is an unassigned destination whose corresponding origin is

already sequenced.

* i is an unassigned destination whose corresponding origin

has not yet been sequenced, but the assigned set is small

enough that the origin could be sequenced before the first stop.

* i is an unassigned origin whose destination has not yet been

sequenced.

Letting i again be the candidate and letting j be the last ordered

el;.nent of A, which imples a j-i linking, i can be ignored if either



95

+ ei  (5.9)

or

ej > ki (5.10)

hold.

Again, two examples will illustrate why these expressions are true.

First, suppose Xj = 6 and ei = 8 so that (5.9) holds. If j occupies its

last possible position, position 6, point i must occupy position 7. if

i is in position 8, j must be in position 7. In both cases, one of the

points violates a time window. For expression (5.10), suppose

ej =i = 9. Since j precedes i, there is no way both windows can be

satisfied. The situation becomes worse as ej increases, i.e., j cannot

be served until later times.

Candidate selection. Suppose that two feasible candidates have

been identified. The one with the greatest savings is added to the

partial tour. If both candidates have the same savings and the front

end candidate is an origin, it is sequenced. Otherwise, the rear end

candidate is added to the assigned set. It is not necessarily possible

to add both the front end and the rear end can didate to a partial tour

in the event of a tie in savings. Final tour feasibility can be

destroyed, as was discovered during initial implementation of the

algorithm. In some cases the front end candidate and the rear end candi-

date are the same point.
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Constructing a Feasible Tour

When only the precedence constraints are binding, it is a

relatively simple matter to construct a feasible tour using the simple

checks. However, when time windows are present, guaranteeing that a

partial tour can be extended into a legitimate final solution is much

more complicated.

Ordering of points. Lemma 3 of Chapter IV, establishes necessary

and sufficient conditions for the existence of a feasible solution for

one type of the PUDP. Although the lemma is not valid for all PUDP

instances, the nondecreasing ordering of the NLT times is a useful and

reasonable heuristic for testing feasibility. As before, let P denote

the sequence of points ordered by nondecreasing NLT times. Therefore,

in P each customer point, origin or destination, has a position number,

which would correspond to the stop number if P were a proposed tour.

One assumes P is feasible so that at least one feasible tour exists. If

P is infeasible, the algorithm terminates.

Proposed tour Y. To test feasibility, a complete tour will be

constructed using the already constructed partial tour, the candidate

point, and the ordering P. The complete tour to he so constructed is

termed Y. The ordering P becomes a starting point from which the

proposed tour Y is created. Y is initially a null vector. If the final

Y is feasible, the candidate can be feasibly linked to the partial tour.

If y is not feasible, the proposed condidate is discarded; there is no

assurance that a feasible tour can be constructed.

L__ .
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Concept of Y. Y is constructed one point at a time in reverse

order. Thus, the last position is the first filled, the next to last

position is the second filled, etc. The ordering 11 is used whenever

possible. P is also examined in reverse order. Thus, the last element

of P not already in Y is first considered to fill the next position. It

may be that other points or the entire partial tour will be added at

this point. The decision is based on assigning each point as late as

feasibly possible, which in turn increases the overall likelihood of a

>1 feasible complete tour.

Latest position in A. Let L represent the position number of the

point in A which has the highest position number in P. It is not

necessary that the point in question be the last ordered element in A.

More often than not, it will not be. Suppose there are 10 points in P1

and L = 7. This means that those points in positions 8, 9 and 10 of P

are not yet in the Clarke-Wright generated set A. Therefore, all points

in P with position numbers after L can be assigned identical positions

in Y. The set A may or may not be the next points added to Y. If A

contains origins whose destinations are not in A nor yet in Y, these

must be inserted before A is, to preclude violation of the precedence

constraints. An example test will be used to illustrate the procedure.

For ease of explanation, the customer points will be assigned letters.

Table 9 gives hypothetical time windows for a problem with N = 11.

Figure 5 depicts the associated sequence P, a given assigned set A,

and the initial assignment of stops to based on L. The fact that
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TABLE 9

IYPOTIETICAL TIME WINDOW USED TO DEMONSTRATE
TOUR CONSTRUCTION FEASIBILITY

ORIGINS DESTINATIONS
POINT # NET NLT POINT # NET NIA'

a 1 4 f 2 5

b 1 5 g

c 2 7 11 3 8

d 5 10 i 6 11

c 6 11 j 7 12

't
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,1

P = a b f g c! h d e I j
1 2 3 4 5 6 7 8 9 10

(a) P: the nondecreasing ordering by NLT times

(b) Given assigned set A including candidate

1 2 3 4 5 6 7 8 9 10

(c) Initial construction of Y

Figure 5. Initial construction of the proposed
tour Y using P.

mon
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L=6 is based on the observation that point h occupies position 6 ill

P, whereas the other points, d, e, i and j, which correspond to stops

7, 8, 9 and 10 in P, occupy identical positions in Y.

Destination check. If the assigned set, A, contains origins whose

corresponding destinations are not in A, these destinations must follow

A. Further, if these destinations have position numbers in P less than

L, they are not included in the already sequenced points in Y. Such

stops are inserted, in nondecreasing order of NLT times, before the

points in A are. In the example, destination g, corresponding to origin

b, which is included in A, has a position in 1P of 4. Consequently, g

is not yet included in Y, but must follow all elements of A.

Figure 6(a) shows stop g sequenced.

Flushing out Y. The remaining process places A directly preceding

the first sequenced point in Y, and fills out by taking the as yet

unsequenced stops in the same order as in P. Figure 6(b) depicts the

final proposed tour, which is then checked for feasibility. The example

data results in a proposed tour Y which is feasible. Therefore, the

candidate, either c or b, can be added to the partial tour, and will be

it it subsequently represents the greatest savings.

Clarke-Wright Solution

This process is continued until the final tour is constructed.

Final tour feasibility is assured because a candidate is added to any

partial tour only if a feasible final tour has actually been verified.
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'1O

1 2 3 4 5 6 7 8 9 10

(a) Y with point o added to previous Y

: l a  f c h1 : d -e i 
[ l~ik.__ IJ E g1 c117

1 2 3 4 5 6 7 8 9 10

(b) Final proposed tour

Figure 6. Continued construction of the proposed
tour Y using P.

if
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The final Clarke-Wright solution was also used as an input to the

3-optimal algorithm, thus forming a composite heuristic. Both tileII
3-optimal algorithm and results of the computational experiments are

presented later in this chapter.

IIl. zOUTF ,,sEwi-ION HIEURISTIC

Description of Concept

Tile route insertion heuri , combines the philosophy of the

insertion heuristics with the saving5 concept of the Clarke-Wright

heuristics. One of the sxpli:ttions offered for why the Clarke-Wright

heuristic works so well on the travelling salesman problem (TSP) and

vehicle routing problem (VRP) is that the more distant customers are

considered early for inclusion in the tour. This procedure precludes

expensive, last minute adjustments to sequence these customers. The

route insertion procedure will attempt to incorporate this feature of

the Clarke-Wright model.

The insertion procedures for the TSP and the VRP call for the

selection of the next single point to be added to a partial tour based

on some selection criteria. Because of the precedence relationship of

the PUDP, origin/destination pairs, rather than a single point, are

selected for insertion into the partial tour. In this manner, the route

insertion heuristic specifically addresses the precedence requirement.

Further, when an origin is sequenced, the vehicle must subsequently

travel to the corresponding destination. Therefore, considering tile

locations of both tile origin and the destination, relative to a partial

tour, seems both logical and advantageous.
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Selection Criteria

Pairs are considered for insertion in nonincreasing order of

individual service cost. Individual service means a pair is serviced

directly from the depot and the vehicle returns to the depot upon com-

pletion. For origin i and corresponding destination j, the individual

service cost would be

cl + c + C (5.11)
NMIli ij ji

The pair with the highest individual service cost starts the process.

The highest cost pair is taken first so that the most difficult or

costly customers to serve are considered first, just as they were in the

basic Clarke-Wright model. Thus, if pair (i,j) has the greatest cost,

the initial partial tour would be

1 - i - j 1 (5.12)

where, as before, the depot is designated as the first point. The pair

with the greatest remaining cost is the next pair to be inserted into

the partial tour, and so on.

Insertion Criteria

The next pair is inserted into a partial tour so as to minimize

the total increase in cost. Two cost formulas apply depending on

whether the new destination is inserted directly after its origin, or

at a point later in the partial tour. Figure 7 (a) depicts a partial

tour. Pair (i,j) is to be inserted into this partial tour. Figure 7 (b)
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1 a-b-c -d- 1

(a) Partial tour

i-i
/ \

1-a b-c-d- 1

(b) One insertion of pair (i,j)

i I

1 -a b- c d-1

(c) Another insertion of pair (i,j)

Figure 7. Example insertion patterns for the pair
insertion heuristic.

4J
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depicts one possible arrangement in which j directly follows i. The

increase in cost is

ca+cij + cb ccb (5.13)

Figure 7 (c) depicts the more common occurrence where there are

intervening stops between i and j. For this configuration the increase

in cost is

c.+c c +c +c C
ai Cib ab cj jd Ccd (5.14)

In either case, the insertion of i and j must be such that a feasible

final tour can be constructed. Insuring that a fcasible final tour can

be constructed from a partial tour is absolutely necessary, as noted

above in the discussion of the Clarke-Wright heuristic. A ,omewhat

similar procedure is used to verify the existence of such a feasible

tour.

Feasibility of Insertion

Rough checks. If point y is inserted directly after point x, point

x will precede y in all subsequent tours, although x will not directly

precede y if other stops are inserted between them. Let (i,j) be the

pair to be inserted and let a-b be the two points between which i is

to be considered for insertion. Then i cannot be feasibly inserted

between a and b if either

e >Z. , 5.15)
a- i
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or

ei>Zb (5.16)

Both represent configurations that cannot possibly be feasible.

Similarly, let c-d be the two points between which j is to be considered

for insertion. Then j cannot be feasibly inserted if either of the

following hold:

c--

or

ej > 5.18

More complicated check. When the rough check indicates that a

given insertion may be feasible, a somewhat more complicated check con

be used. This check insures relative feasibility among the elements

of the partial tour which includes the pair currently heing inserted.

Let k represent the difference between the position arbitrary point h

occupies in the partial tour and the position point a occupies. If

ea + k > k (5.19)

for any a and b in tile partial tour where a precedes b then the partial

tour cannot be feasibly extended.

L - .... ...... .. ... .. ..,,N .... . .. .. . gL...... . ._ _ ... ,A
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Detailed Feasibility Check

When a proposed insertion passes all of the above checks it is

still possible that a feasible tour cannot be constructed. Therefore,

a complete tour is generated using the ordering P discussed earlier. If

this tour is feasible, the proposed insertion positions replace, or

become, the incumbent positions. In either case, the next set of

positions are then checked and the process repeated until the feasible

positions that minimize either (5.13) or (5.14) are found.

Difference in concept. The primary difference between checking

feasibility with route insertion and with the Clarke-Wright approach is

that with route insertion only the order within the partial tour A must

be preserved. With Clarke-Wright, the entire set A was sequenced as a

block.

Construction of Y. A complete tour Y is constructed and then

checked to see if it is feasible. Y is constructed one point at a time

in reverse order using P and the ordered set A. IElements from set A are

sequenced in Y when they are the last element and normally appear in the

reverse sequence of P or when the last element of A must be sequenced

to preclude violation of a "not earlier than" requirement.

Modification ofe_. When points appear in a partial tour, the

earliest time one stop can actually be visited may be altered by a pre-

vious point. For example, consider the partial tour a-b-c-d, and

Suppose ea is greater than any of the other times. Recall that all time

I [ -* . . . . " i . ....... I el-* - I I I4 . . -4 i ,
'
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windows are defined by the stop numbers of the vehicles route. Thus,

direct travel between two points requires one stop. Then the earliest

that b, c and d can be visited is ea+1, Ca+2, and ea, 3 respectively.

Were any of these points visited earlier, e a would be violated. For

example, if a tour were being constructed in reverse sequence, stop (I

must be sequenced by the ca+3 position (appear in the tour at ea+. ofr

later) or ea will be violated. The concept of adjusting e 's is us(ed

iin constructing Y.

Example Y. Consider the example P given in Figure S(a), on p. 99,

and time windows defined b the data in Table S, on p. 91. Suppose

that the partial tour, made up of two pairs, is

- - d - g - i . 5.20)

Table 10 gives the revised not-earlier-than times for each of the

points in the partial tour. Note the times have changed for points C

and i . Figure 8 gives the step by step construct ion of Y. Steps I

insert the last three elements of P. At step .1, d is not added to Y

because g, not d, is on the end of the riot-vet-sequenced points in A.

Therefore, h, the point preceding d in P, is inserted at this step.

At step 5 and 0, g and d are inserted because of their adjusted not-

earlier-than times. The remaining points are inserted ba;ed on their-

position in 1P. The final Y is seen to be feasible. A forward con-

struct ion using adjusted not-later-than tilrues could ; Is( hive heel used,
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IAIA 101
-4

!'i TABLEIi It

REVISE[D NOT EARLI E' 11"IAN TI I.S FOR Till' POINTS
IN A FOR EXA.PLE ( PROBLEM

PO INT NET

b 1

d 5

g 6

i 7

kL1b i
-
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A Step i 1U

1 2 3 4 5 6 7 8 9 10
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Step 3 e__ L 9 1I7'''
Step 4 _ _ _ ____ ... e I i j -

Steps 5 __ _JL1
Step 6 d__ _~iT7~i g h e__3

Step 7 L1__ d 9 --LI Ic iV1
b I -d

8: [fc[lgj C j

Step 9 7Jb L J-11- Ii
Step 10 Fa f ~ i iL

1 2 3 4 5 6 7 8 9 10

Figure 8. Step by step construction of Y.
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IV. GREEDY HEURISTIC

The "greedy" or "nearest neighbor" heuristic is significantly

simpler to implement than either the Clarke-Wright or the route

*: insertion algorithms. One begins at the depot and always proceeds to

the closest point which can lead to a feasible completion.

I .1 Candidate Set

j , At each step, a candidate set is identified. Initially, the

candidate set is made up of all origins that can be visited during the

first time period, i.e., all

j C 0 3 ej < 2 (5.21)

The closest origin is added to the tour. Its destination, if feasible,

and all

j - 0 3 ej < 3 (5.22)

are added to the candidate set for the next stop. So long as a feasible

complete tour can be attained, this process continues until all customers

are scheduled. The candidate set at each point consists of unsequenced

origins and of unsequenced destinations whose corresponding origins are

sequenced, both of whose time windows overlap the next stop number.

Arbitrary selection of the nearest point among this set will not

necessarily lead to a feasible tour.
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Feasibility Check

The nearest neighbor is selected from the candidate set and a trial

complete tour Y is constructed. If Y is feasible, the point selected

is added to the tour. If Y is not feasible, the point is removed from

the candidate set and the process repeated until a feasible point is

found. As before, the sequence P is used, this time in a forward

manner. The k stops selected by the greedy procedure become the first

k stops in Y. All remaining stops are then sequenced using the same

relative order as these stops have in P.

Random Feasible Tours

The candidate set and feasibility check used for the greedy

heuristic were also used with a random selection of the elements from

the candidate set. These tours were used as a random input to the

3-optimal heuristic. The greedy as well as the randomly generated tour

results will be discussed after the tour improvement heuristics are

examined.

V. TOUR IMPROVEMENT IIILURISTICS

X-Optimality

The X-optimal heuristic of Lin and Kerninghan, discussed in

Chapter II, is one of the most powerful heuristics available for use on

the travelling salesman problem and the vehicle routing problem. One of

the keys to the computational efficiency of the algorithm is that

profitable reconnection patterns are pursued only if it is possible to



actually exchange the A arcs and obtain a feasible solut ion. In1sur ig

feasibility is relatively easy for the TSP1, but much more complicated

for the PUI)P.

Consider the example depicted in Figure 9(a) . Thlere is rno

possible way to remove two arcs and reconnect them in a new pattern such

that a new tour satisfies the precedence requirements. Yet Figure ()1

shows a feasible 3-optimal reconnect ion. The A -opt i na 1 approach , Whichr

only continues if the arcs already removed can be feasibly rejoined,

would have stopped at =2 and never have investigated thle con1figuira-

tion shrown in Figure 9(b).

One should note that for a directed TSP tour, no 2-arc exchanges

are possible. A directed TSiP is a ISP onl a directed network, i.e.

arcs only go in one direct ion betweenl nodes. Thle 2-il* rc rc~riIec t orI

pratt ern, shown earlier inl I i gu e 9, reqo I1re-Son 011CO tire .it irs rena IMi n1

after the arcs are removed to he traver-sedinIl the I'eVeCc rskIl rec tnonl.

Since reverse arcs do not exist inl tie illrec ed net%10ork, n11-ar

exchanges are possible. 'I A0-ar Ic CXCII1irj-ige ire (pilII I ii el' n11 ti11 PI 111'.

Traversing paths in a reverse directionl is iiot proil hilcd irl tilie 11111P

unless doing so violates a li-vec decelC colls 1t i t or- orre t thle t ilie

window constraints. Traversing paths, iii the rceerse di rec t ion is5

discussed in greater detail Later inl tll' iii 1e liat~ e 1 r a pat Of tile

discussion of ain r-opt iral alIgor ithin. 'If I iplieat ion of tis

discussion is that there is no way of Ikow inig ai priori iih,, ti or rot

the removal of more arcs will evenuallY produce fea sib ility 'I lie

situation depicted in F:i gure 9(a) is a fa i rly common occurrence.
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01 01

(a) No 2 arc exchange poss ible. (b) A feasiblie 3 arc exchange.

Figure 9. The problem with precedence constraiints
and X-optimality.
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When the problem constraints are relatively tight, many

reconnections will appear profitable from a cost savings point of view.

Therefore, the alternative of continuing until no more savings are

possible and then testing feasibility would be both inefficient and

ineffective. No other alternative was found that allowed for modifica-

tion of the X-optimality concept so that it could be applied to the

PUDP. This is yet another example of how the precedence constraints of

the PUDP complicate or relegate ineffective solution techniques that are

very powerful when applied to the TSP or the VRP.

r-Opt imal ity

The concept underlying the r-optimal beuristic was presented in

Chapter II. A 3-optimal algorithm was developed and used to solve the

PUDP. The 3-optimal heuristic was used on randomly generated feasible

tours as well as in conjunction with solutions generated by the tour

construction heuristics.

Order of complexity. For the TSP, the r-optimal heuristic is of

order Nr, where N is the number of problem nodes. For the PUDII with a

fixed quality of service parameter Q, the algorithm can effectively be

used in order NQr -1 . Recall that Q is the maximum difference between

pickup and latest delivery for a customer. The reason for this is that

it is highly improbable that a feasible reconnection pattern exists

when the difference between the first arc removed and the last arc

removed is greater than or equal to Q arcs. In fact, in all of the

problems run, not once was a better solution obtained by considering

more than a span of Q arcs.
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Figure 10 depicts a span of Q arcs using a hypothetical tour. In

this figure, letters represent the points visited and numbers the

connecting arcs. Suppose Q=5 and arc 3 is the first arc removed.

Then the remaining two arcs can be selected from among arcs 4 through 7.

The question of feasibility provides an insight as to why such a

reduction in computational effort is possible. Notwithstanding,

Figure 11 shows a contrived example where a span of 2Q-1 arcs results

in a feasible reconnection pattern. In the figure, Q=4; the points

represent either all origins or all destinations; the squares the

beginning and ending points for the six arcs in the span; the numbers

inside circles the position number for a point in the tour; and the

paired numbers the applicable time windows. Each point retpresents

either an origin or a destination. Consequently, the time windows

contain Q stops, not the Q+l stops which define the time window for the

pair. This is true because Q is effectively the difference between

the latest delivery and the earliest pickup for a given customer.

Feasibility and reverse tours. Figure 12 is a copy of Figure 3,

p. 28, previously discussed in Chapter II. Note that only in

reconnection pattern (2) are all paths (dark lines remaining after the

arcs are removed) traversed in tile same forward direction as is the

original, feasible tour. In all others, at least one sequence of stops

is traversed in the reverse order. In patterns (1) and (5), both paths

are traversed in reverse order. Because of the precedence requirements

of the PUDP, reverse paths place very stringent requirements on tile

• . 1
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9-12 10-130------------- - --

>11-14

III

9-12

0------- --
11-14 10-13

(a) Initial tour with 3 arcs removed

9-12 D 10-13

.11-14G-1

(b) New tour after reconnect ion

Figure 10. lxample of a 2Q-I feasible
reconnection pattern for
Q=4.
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.11

'c-Span of S arcs-:,I

1 2 3 4 S 6 7 8 9

Figure 11. A span of Q=5 for the 3-optimal heuristic.
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(1)22

(a) 2-optimial

A
2 3 B 

,•\ B ,

32 3

2 2 3

114

5 6 5
(4) (S)

(b) 3-opt imal

Figure 12. Reconnection patterns to explain
why a span of Q arcs is
sufficient.

i. 
I
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points that can be legitimately included in these paths. Any set of

points to be traversed in reverse order cannot feasibly contain an

origin/destination pair. Also, interchanging the relative order that

the disconnected paths are to be traversed restricts the permissable

location of a corresponding destination. For example, in patterns (4)

and (5), any origin among the points between 4 and 5 must have its

destination at or beyond point 6.

Feasibility and timing. Because of the assumed time windows

associated with each customer point, many reconnections result in one

or more time windows being violated. For example, if any of the stops

from points 2 to 3 are already sequenced at their not-later-than times,

patterns (2), (3), (4) and (5) will all result in that stop being

visited at a later time. For noncontrived problems, many solution

points are sequenced at or near one end or the other of their

respective time windows. Consequently, slight shifts, imposed by the

various reconnection patterns, can result in a violation of the time

window. For this reason, a span of Q stops was sufficient to obtain

the best 3-optimal tour with a x'cry high probability.

Checking feasibility. A proposed tour Y is constructed and then

checked for feasibility. Because any tour presented to the 3-optimal

algorithm is required to be feasible, it is only necessary to check

that portion of Y between points 1 and 6 to determine if the entire tour

if feasible. The check insures that the origin precedes its

corresponding destination and that all time window constraints are

[4
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satisfied. When a feasible improvement is found, this solutt ion

replaces the incumbent and the algorithm is repeated. When no improve-

ment can be found for an entire tour, the current solution is the

3-optimal solution. Despite the restrictions imposed on the reconnec-

tion patterns by the precedence and time window constraints, the

3-optimal algorithm was clearly superior to all other heuristics

tested.

VI. COMI'UTAT I ONAi. RLSULTS

All of the heuristics discussed above were tested using randomly

generated data. In addition, the ordering P was used as an initial

feasible solution for the 3-optimal algorithm. [herefore, the 3-optimal

approach was used both as a tour improvement hear i stic and ill con i Juc tion

with one of the tour construction heu r i st iCs as a coMposite heuristic.

Hfeuristics Verses Optimality

Data. When time windows are present, as in the dial-a-ride service

problem, optimal solutions are readily available which can be used to

compare various heuristic's effectiveness. Table (, on P. 81, contains

the not-later-than times used for defining the time win,!ows. Table 11

presents the solution Values for 10 problem i nstances. The instances

are different in that the location of each point, either an origin point

or a destination point, is randomly generated. Consequently this

results in entirely different cost matri ces. Costs are again compluted

using the rectilinear metric. lie data in [able 11 assilifle a quality of
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service, Q, of five stops and no restriction oil maximum waiting time,

NI. Later, varying the quality of service parameters is examined.

Tour construction comparison. The data indicate that none of the

tour construction heuristics perform particularly well. While the

average performance on the ten problems is in the neighbe 'hood of 12%

over optimal, there are several cases where solutions of 20%j or more

above optimal are obtained. Clearly, there is nothing to indicate that

any of the tour constuction heuristics is superior to another. These

results are interesting in that the Clarke-Wright heuristic, which has

shown such considerable success on the related '5I'I and VRII, performs so

poorly on the more heavily constrained PUIP. Also noteworthy is that

the fairly simple greedy procedure produces results that are on an

average as good as the other more complicated tour construction

heuristics. An explanation, which again related to the precedence

relationship, is offered beginning on page 129.

Tour improvement and composite heuristics. The 3-optimal heuristic

applied to the ordering P unquestionably produces better results than

any of the tour construction heuristics. In fact, these results are

equal to those of the composite heuristics. On average, the 3-optimal

procedure on any given feasible tour produces results within 3OO of the

optimal solution, although some of the 3-optimal solutions are more than

10% above optimal. When the best of five 3-optimal solutions is used

the results are on average within 1% of optimal. '[he five initial

feasible tours are randomly generated. These results are considered

-j
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excellent, but the computational effort is five times as great as

finding the 3-optimal solution from the ordering P. There does not

appear to be any rationale for using a composite heuristic. The expense

of finding the initial feasible tour by one of the tour construction

heuristics is too great, and offers no apparent advantage over tile

simpler techniques.

Varying Service Parameters

The results discussed above assumed a quality of service of five

stops and no special restriction on early' arrivals (Q=M=5). lhe

question next to be addressed is how altering these parameters affects

the efficiency of the heuristics. Tables 12 thru 15 present solution

data for: (1) Q=Nl=ll; (2) Q=ll, M=6; (3) Q=7, M=4; and, (4) Q=5, ,1=3

respectively. The cost data and not-later-than times for the destina-

tions are identical to that used to obtain the data discussed above.

Therefore, all solution differences are directly attributable to

changes in the service parameters.

Comments on results. As the constraints become less binding, the

tour construction heuristics perform even more poorly. Solutions of

more than 50% above optimal were obtained. The 3-optimal heuristic

also showed some deterioration in effectiveness as the constraints were

relaxed. However, the average results were still within 5%0 of the

optimal. As before, there is no advantage to using any of the tour

construction heuristics in a composite mode. The 3-optimal algorithm

applied to any feasible tour performs as well as any of the composites.
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Large Problems

It was anticipated that the basic results discussed above would

carry over to large scale problems. Table 16 verifies this fact for

three problems with N=91, Q=7 and M=4. ile best of the five 3-optimal

solutions again produced excellent results that were within 2% of the

optimal value.

Analysis of Results

The precedence requirement is deemed to be the primary culprit

which renders the tour construction heuristics ineffective. Because

each of these heuristics constructs tours which maintain either actual

or relative order, the order becomes locked in. Not only is the point

being sequenced locked into a given relative order, its corresponding

pair-mate is also. Only in the pair selection heuristic is the cost

of sequencing the pair-mate considered at all when attempting to

sequence a given point. However, based on the empirical data, even

explicitly considering such costs is not necessarily effective.

Figure 13 depicts an example of how the precedence requirement

might lead to problems with the Clarke-Wright or greedy heuristics. In

panel (a) one supposes that a partial tour, depicted by' the dark line,

has been constructed and origin i is determined to be tile next point to

be added to the tour. Because of the location of i's corresponding

destination, j, tile tour must at sometime retrace itself in order to

visit stop j, as shown in panel (b). Stop j would not sequenced until

it was absolutely necessary to do so. Panel (c) presents another

possible partial tour which is clearly much cheaper.
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j 0 e..

Depot

(a) One partial tour

___-- a

D)epot

(b) Adding j to (a) 's tour

Depot

(c) Another partial tour

Figure 13. Lxample of how the precedence requirement
can result in higher than necessary
tour costs.

___ ..
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For the pair insertion heuristic, Figure 14 presents an example of

the possible problems. Panel (a) depicts a partial tour. Pair number

3 is the next pair to be added. Panel (b) shows the insertion of 03

and D3 into the partial tour in the prescribed manner. Panel (c) shows

another partial tour, which is obviously superior to that depicted in

panel (b). Because the relative order of [)I preceding 02 in panel (a),

the configuration in panel (c) could never be obtained, since the

relative order there has 02 preceding P1 .

Because of the problems created by the precedence requirement in

attempting to construct a tour point by- point or pair by pair, it is

considered doubtful that any tour construction heuristic could be

developed that is superior to the 3 -optimal heuristic. Further, the

3-optimal heuristic is more efficient in terms of computational effort.

Therefore, any further attempt to develop tour construction heuristics

for the P(JDP is not recommended. In Chapter VII subject areas that

appear to be much more promising for further research are suggested.
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02 02

(a) Tour with pairs 1 and 2 seqUenlced

01

03 
--

D)3

02

(b) Pair 3 added to panel(a

1'01

0-0

0,1.

(c) A superior tour for pa irs 1 , 2and 3

Figure 14 . Ail evampi e dens a gpa ir
insert ion proF I ems.



MULlI HILL U LIICIL PROBLIM

In this chapter, tile aligori thmns Used in the previjous chapters to

solve the single vehicle pi ckup and dcli very prlilel 1cm1ae extended to

the multiple vehicle case. Thle mo1lt jil vehicle problem~n is more

difficult to sol1ve than is thle si ehbi cl1e problemij. Tbhis is true1

both for exact and heiri st ic so 1 ot ions to tile problem',. .xalc t so Ilot iOnl

to the problecm, using thle dvnami c programini ng al1gori thmn detailed in

-Chapter IV, is first discussed, t1henl some of thle heur1-i Stic CSO Lut ions'-

detailed in Chapter V are examined.

1.EXACT SOLUT ION I1C l1111.MUI11.
VEIIICIA. PRONlEM

The discussion conta ined in Chapter 1IV Suggested t hat dvnamic

programming was the on ly exact so lot i on aI I gor i tbmn that apae

promising for opt iinal so t ion Of thle silug I Vel11i iCI PUN'. Ilbe inhi ic nt

coimpl1exi ty of thle p~roblIeni was the pr imary rca son thbat o thl tc in i pies

were determined to be i neffective. Because thle roil ti pie vehicle PUN1)

is even more conmplecx than the single vehicle version, these same11

arguments appear to apply even more Strongly. Therecfore, on ly dvmiam ic

programming was cons idered for extension to the muIt iple v'ehi Icl Ica se.
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Dynamic Programming Extended to the

Multiple Vehicle Problem

Very large single vehicle PUIJP's were solved using the dynamic

programming algorithm developed in Chapter IV. The key factor that

allowed for such success was that all problem constraints were assumed

to be expressable in terms of stop numbers. The state space could,

therefore, be drastically reduced by only generating feasible combina-

tions. A binary representation vector was used to identify the specific

customer points that comprised each of these vectors. The state space

cannot be as drastically reduced in the multiple vehicle problem. In

fact, given a reasonable quality of service parameter, Q, the constrained

problems that can be optimally solved are nearly identical to their

unconstrained couterparts. The reason for this lies in the manner in

which the state vectors are generated and then used to determined the

optimal solution.

Solution on an expanded network. In Chapter 1I , the solution of

the multiple travelling salesman problem on an expanded network was

discussed. The same technique can be used for the PUIM'. '1he only

special precaution necessary for using the dynamic programming algorithm

is that one of the points representing the depot can only be considered

for the lead position if the set S contains nothing other than origin/

destination pairs a,. possibly points representing the common depot.

This insures that a customer is not picked up by one vehicle and

delivered by another.

9 4



I 3o

Instances of interest. Consider the situation where each vehicle

is to provide service to an equal number of customers. Therefore, the

number of customers is assumed to be an integer multiple of the number

of vehicles. For example, if there were five vehicles, then there

would be either 5, 10, 15, 20, 25. . .customers. Given this scenario,

those values of k where the lead position in the dynamic programming

state vector is to be a depot point are well defined. Suppose there

were 25 customers to be assigned among the five vehicles. Recalling

that k represents the total number of points considered for inclusion,

the lead positions would be the 11th, 22nd, 33rd, etc. There are ten

positions to accomodate five pairs prior to the first depot point (one

route); 21 positions to accomodate two sets of five pairs and the first

depot point prior to the second depot point (two routes); etc.

Although this problem could be solved on the expanded network, as

suggested above, a simpler method is available for this instance that

requires considerably less storage than does solution on an expanded

network. Unfortunately, even the simpler method requires too much

storage for the solution of problems with more than about 10 origin/

destination pairs.

Storage rcquirements to r exjanded ne twork solu tion. Suppose onl1

the precedence constraints are binding, let b represent the nanlmher of

origin/destination pair: assigned to a vehicle and recall that n is

the number of origin/desination pairs. In the example above with fi'c

vehicles, n = 25 and b = 5. These data will hc used at each step to

illustrate the computations.

,WON"
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First, consider the number of storage locations for k values

directly preceding k = 2b + 1 or 11, which is the point at which one of

the depot points is first considered for the lead position. Vor

k = 2b or 10 there are

n (6.1)
b-1

storage locations required for tile flO values. The lead position must

always be one of the n origins. Lxpression (6.1) is based on n possible

origins visited immediately upon departure from the depot and the

n-i taken b-i ways of selecting the remaining customers to be serviced

by one of the vehicles. Thus, the example data result in

25 j = 265,650
4

required locations. For k=2b-l or 9 and an origin in the lead

position, the storage required is

((.2)

b-2I

In terms of the example, this represents 25 choices of the lead origin,

24 remaining pairs taken 3 at a time, and one choice among the 21

remaining destinations. This destination is not a match to one of the

origins being considered, but would match the origin selected subse-

quently at the k = 10 iteration. The value of this COmputation is
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1,062,600. If a destination were the lead, the required storage would

be the same as that given by expression (6.1). In the example, tile

required storage would be 1,062,600 + 265,650 = 1,.328,250 for k 9.

Considering k = 16 in this same example, the storage required for Just

the f16 values would be in excess of 68 million storage locations.

Clearly, practical solution to tile multiple vehicle PU)t' on an expanded

network is limited to rather small problems.

Alternative Solution Using
4 1 )ynamic Programming

In the above discussion, once all of the f b+l or fl1 values are

computed, the data necessary to solve the problem is at hand. This is

so since the f2b+l values represent the cost of all feasible tours of

the n customers taken b at a time. In the example, the fil values

contain data on all comb i nat ions of customers taken 5 at a time. viven

5 vehicles being used, the optimal solution is found by taking the 5

fll vIlues whose sum is minimal and whose comhined individnal state

vectors indicate that service is provided to all customers. In general,

this can be accomplished by a direct comparison of all of the f'bl

values and their binary representation vectors. The FORTRAN routine

to accomplish this requires V nested 1)O loops, where V represents the

number of vehicles. Lach loop corresponds to one of the vehicles, and

an assignment of customers to that vehicle C comes from the idcntification

vector. Suppose V = 2 and the customers set is {1,2,3,.,5,.

Therefore, three customers must be assigned to each vehicle. If the

identification vector for the first loop associated with a specific
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f2 value identifies the set {l,3,41, while the one for the second

identifies {2,5,6}, their combination results in service to all of the

customers. Furthermore, if the sum of the two f7 values is minimal with

respect to all other feasible combinations, the two optimal routes can

be solved for individually, each as a single vehicle problem, thus

solving the two vehicle problem.

The range of the exterior loop is over the number of f2+l values.

For the earlier example above, there would he five loops, each with an

initial range of approximately 265,650. Let F = {f2b+l values}. At

first look, it might appear that this routine requires on the order of

ItF v comparisons or 265,6505 - 1.323 x 1027 comparisons. However, the

inner loops need not be entered unless there is a possibility that the

optimal solution is contained within.

Requirement for no overlapp)ing customers. The representation

vectors identify the customers serviced by each one of the JFJ indi-

vidual tours. If the same origin/destination pair is known to be in

any two of the loops, then there is no way that a feasible solution can

exist. The reason for this is that each loop, in effect, assigns

exactly b(N/V) customers to a vehicle. If the same customer is assigned

to more than one vehicle, it must be true that at least one customer is

not assigned to an) vehicle. Let

Ri = representation vector of the ith individual tour. (6.3)

Suppose V > 3, then if

* - ~q



R fl R. $ 0 (6.4)

for the first two loops, the second loop can he imediately incremented

since at least one origin/destination pair is contained in both partial

tours. In terms of the previous example wherc n=25, V=5 and b=5,

if one customer pair showed up in the intersection, the first two loops

provide assignments for only 9 customers. The best that the three

remaining loops could do is provide assignments for 15 more. Conse-

quently, one customer is not assigned to any vehicle, and the solution

is thereby infeasible. If the intersection is null, a feasible complete

tour can be found and the third loop is entered. Let Rk be a vector

for this third loop. Now, if

(Ri fl Rk) U (Rj fl Rk) O 0 (6.5)

the third loop is incremented and another Rk selected. Otherwise the

fourth loop is entered. Finally, the Vth loop is entered, a representa-

tion vector is found such that all customers are serviced. This repre-

sents a feasible solution and the cost of this solution, represented

by the V f2b+l values, is computed. If the value of this solution is

better than the incumn'ant, it becomes the new solution. The innermost

loop is then incremented until another solution is found or until the

loop parameter is exhausted. These basic steps are continued until the

lowest cost feasible complete tour is found.

A
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FORTRAN intersection. Graves (20) provides techniques for

performing logical operations in FORTRAN without recourse to assembly

level routines. His approach is an order of magnitude quicker than

using an assembly level routine since it eliminates several storage and

retrieval operations for register values as the program shifts control

from the main routine to the subroutine and back again. The

EQUIVALENCE statement is the key as shown in the following algorithm

which computes the binary intersection A of two representation vectors

B and C and prints out the decimal equivalent:

IN TGER A,B,C
L()(; IICAL*4 LA, LB, LC
H IJ I VALINC( A' [ LA , (B,ILB) ,(
LA = LB.AND.LC

PRINT A

Thus, if A = 0, the intersection is null. If A 0 0, two or more

origin/destination pairs are continued in both B and C. Identification

of which pairs are redundant could be found by converting the decimal

value of A into its binary equivalent.

Limitation on Problem Size

As mentioned above, exact solution to problems with more than about

ten origin/destination pairs is not practical ii the case of the

multiple vehicle PUDP. Time windows can still be used to determine

those points which are valid condidates for the lead position or which

are eligible to be used to complete a given state vector. Ihecy cannot

be used to require points to be included in the completion of a state

" vector. A point which, if not sequenced would preclude any feasible

• __---- ------
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solution in the single vehicle problem, can be assigned to any of the

V vehicles in the multiple vehicle case. For the alternative solutions

approach discussed above, there is never an instance where a point must

be included. The feasible state space is also larger due to the fact

that the candidate set for the lead position is approximately V times

greater than it is for the single vehicle problem. Consequently, tile

number of feasible states for each value of k and choice of lead is

considerably greater.

ComI)tutational Results

Table 17 presents typical results for various sized problems. Only

the precedence contraints were binding. lhe largest of these problems

actually solved involved only nine origin/destination pairs and three

vehicles. This equates to a 21 point multiple travelling salesman

problem on an expanded graph. Attempting to add one more customer per

vehicle resulted in exceeding a five minute execution time limit. In

fact, the limit was exceeded during the computation of one of the

9,900 f5 values. This means the problem was less than one half solved

at the time of termination, since storage required up to and including

f 5 is only, 14,994 locations.

Constrained problems produced very similar results. lhe 12

customer, 3 vehicle problem was too large to solve. lising a value of

Q=5, the time windows for the remaining problems are very similar to

those for an unconstrained problem. Consequently, the n umber of feasiblc

states generated is not significantly reduced. Table 18 provides . side
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TABLE 17

SELECTED OPTIMAL RESULTS FOR 'TIE MULTIPLE VEHICLE
PICKUP AND DELIVERY PROBLEM

NUMBER NUMBER RUN
OF OF N STORAGE TIMI

VEHICLES CUSTOMERS REQUIRID (SE:(:)

2 4 9 65 3.1

2 6 13 667 4.3

2 8 17 6,337 74.53

3 6 13 157 3.2

3 9 19 2,560 22.4

3 12 25 39,414 > 301)



TALLL 18

COMPARISON 01. 'I PMi WINDOWS OR (W)\SIRA I1I1) VERSUS
UNCONSTRA I ,I) VLIS ION OF IIIRII. \IIITCLIl,

NINE CUIS'IOMI;R FIIlP

( ) (h)

tiNCONSTRA I NiD CONSI R.\ I Nil I)
EQU I VA LENT

ORI GINS iiiSl NAi ONS OR IG INS )EISI I NAIONS
4 NET NIT 0 NET NIT N I .NIA XI I NLT

2 1 5 11 2 0 1 3 11 2 4

3 1 5 12 2 6 1 3 12 2 4

4 1 S 13 2 6 1 1 13 2 5

5 1 5 14 2 6 1 .1 14 2 5

6 1 5 15 2 6 1 1 S 2 5

7 1 S 16 2 0 1 5 1( 2 0

8 1 5 17 2 6 1 5 1- 2 0

9 1 5 18 2 6 1 5 iS 2 0

10 1 5 19 2 6 1 5 19 2 6

p.I
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by side comparison for the 9 customer, 3 vehicle problem. While the

unconstrained problem required 2,566 storage locations, the constrained

counterpart requires 2,128 locations. Consequently, optimal solution

to any real world multiple vehicle problem is not deemed practical.

The state space becomes too large, just as it does in the travelling

salesman problem.

II. IILURISTIC SOLUTION TO TIlE MULTIPLE
VEHICLE PROBLLE

The multiple vehicle PUDP was shown in the preceding sect ion to be

more difficult to solve optimally. It is also more difficult to obtain

a good solution by means of a heuristic, although a precise measure of

"goodness" is difficult because only smal iproblems can be solved

optimally. For the single vehicle problem, the 3-optimal heuristic

produced solutions generally within a few percentage points of the

optimal solution. As will be seen below, the 3-optimlal technique is

severely limited because of the precedence relationship in the mu'tiple

vehicle problem.

The key to good solutions in the multiple vehicle )rob1lem is

determining which vehicle customers should be assigned to. Once

customers are assigned to a given vehicle, the problem reduces to V

single vehicle problems for which optimal or very good solut ions are

readily attainable. Several attempts were m1ade to determine a goOd

method to make such assignments. The resu Its are somewhat discon raging

as will be seen later. Consequently, the multiple vehicle problem

appears to remain relatively unsolved.
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Clarke-Wright and Pair Insertion

Two of the tour construction heuristics discussed in the last

chapter were the Clarke-Wright savings heuristic and the pair insertion

heuristic. Both of these heuristics were expensive in terms of compu-

tational effort and performed relatively poorly. Other heuristics

produced much better results. Therefore, neither of these approaches

was pursued as a possible solution to the multiple vehicle problem.

Greedy Heuristic

"ihe greedy heuristic is also a tour construction heuristic, but is

much less expensive computationally. '[he heuristic also has the

advantage that it is easily understood and can often be implemented

manually. Therefore, the greedy heuristic was selected to determine how

well a tour construction heuristic performed on the multiplic Vehicle

problem. The results Were surprisingly good.

Construction concept. "lhere are two ways that tours could be

constructed using the nearest neighbor concept. One would be a

sequential approach where vehicles are dispatched one at a time. II

this case, 1/V of the customers would be assigned to the first vehicle

before the second is dispatched. The second approach dispatches all

vehicles at the same time and builds routes simultaneously. The latter

approach was used for the multiple vehicle 1111)', since it produced

individual routes of nearly equal length. The former method tends to

produce at least one relatively short route and at least one relatively

long route which may be undesirable.
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l)escription of algorithm. In itially, the V nearest origins to the

depot which satisfy the time window constraints are assigned one each to

the V vehicles. Then a second stop is determined for all the vehicles,

followed by the third, fourth, etc. A candidate set is used to

identify all unsequenced points that satisfy the time window constraints.

For each vehicle, the next nearest feasible neighbor from this candidate

set is added to the partial tour, provided a check, made to insure that

adding the nearest neighbor will result in a feasible tour, is

successful.

Feasibility check. Insuring that points added allow for a feasible

set of individual tours is essential for the multiple vehicle problem,

just as it was for the single vehicle problem. The construction or

flushing out of the partially completed tours is a bit more complex in

the multIple vehicle problem. The nondecreasing ordering P is used,

just as in the single vehicle case. The next element of P, not already

sequenced by the greed) selection, is placed on the vehicle with the

fewest elements unless it is a destination. bestinations must be

placed oTI the same vehicle as their corresponding origins. lach of

the V individual tours is then checked to verify that it is feasible.

Unless all V of the tours are feasible, the nearest neighbor being

considered for addition to one of the tours is not added. Iather it is

removed from the candidate set for that Vehicle and another candidate

(the nearest remaining feasible neighbor) is selected and the feasibility

check repeated.



Optimal individual tours. Once all V tours have been constructed,

it is often possible to determine the optimal routing for each tour.

This is possible when all problem constraints are expressable in terms

of the vehicles' stop numbers as discussed in Chapter IV. The greedy

solution identifies which pairs are on each vehicle, thus defining V

single vehicle problems. If the constraints are expressed in a manner

such that the dynamic programming algorithm can not be used, or if

the problem is too large for the dynamic programming algorithm, the

3-optimal heuristic can be applied to the greedy solution. These

techniques were applied to all of the problems studied herein.

Greedy look ahead. The basic greedy algorithm is myopic in that

one selects the nearest neighbor without thought of where the tour ii I1

next go. The precedence requirement of the PlDt' necessitates subsequent

travel to the as yet uinsequenced destinations. It was conjectured that

by considering (minimizing) the distance over the next two points that

a better solution could be obtained, especially in terms of which pairs

were assigned to which vehicle. The hasic greed\ a lgorithlm is an order

Z algorithm, where Z represents the cardi na litv of the current candidate

set . The look ahead greedy is approximately an order algorithim.

ResuIts indicated no appreciable difference between the greedy and the

look ahead greedy. Therefore, the look ahead version was not te sted

further. The heavier computational effort could not be justified.

0l
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r-Optimal Heuristic

L imitations. The results of Chapter V clearly showed the

superiority of the 3-optimal heuristic when compared to any of the tour

construction heuristics. However, the precedence constraint nullifies

much of the effectiveness of the r-optimal heuristic when applied to

the multiple vehicle problem. The solution presented to the 3-optimal

algorithm is on an expanded network. Since a very good (if not optimal)

solution can be obtained for the individual tours, interchanging arcs

between tours and thus creating a change in the customers assigned

to a given vehicle is what is desired. 'Ihe prohlefl stems fro;m the

necessity that both the origin and destimation he on the same vehicie.

For the pickup and delivery problem, this requirement can only be met

when the vehicles are empty, as is shown below.

Reconect ion pattern . 'Ihe crux of tile problem can he readily sZcn

by considering a 2-opt imal example. In Fililore 13(;1), the to indi-

vidual tours, each with an arc removed, are shonn side by side. I he

four (* s all represent the common depot, and the indi vidlial toulrs

begin at the bottom and proceed upward. Each letter represents the

set of point.s betwecn the depot and a removed arc. Figure ( h

depicts the onlv available reconnection pattern. Let i and 1 represet

an origin aL its cOrrespoMling desti nation respect i vel . or the

configur;ition in ligure 15(a) to be in itiall y fcasihie the folow ini:

conlitions most hold:
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iEA => jE(AUB) (6.6)

iLC => j F- (CIJD) , (0.7)

jLB => i(AUBJ , (6.8)

and

jLD => ic(CUD) (6.9)

Clearly, if

iLA and jcB or if icC and jcD

removal of either of these arcs could never result in a feasible

solution, as reconnection would result in the origin assigned to one

vehicle and the deitination to another. Only when the vehicle is empty

can an arc feasibly be removed. In order to maintain an equal number of

customers serviced by each vehicle, both vehicles must become empty at

the same stop number. lhe likelihood of this occurring is rather sinall

based on the P:,pirical evidence. lven when such an occurance does

materialized, the interchange is seldom profitable.

lxtension to 3-optimal. yiven the restriction that each vehicle

must provide service to the same number of customers, there is only one

way three arcs can be feasibily removed. Removal o)u" two arc.;s from onIe

tour alters the number of customers served hY a given vehiclc. There-

fore, the arcs must conic from each of three separ:mte tours, all at the

same vehicle stop number, and With all vehicles em)tV prior to the break.
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The likelihood of this occurring is even less than with a two arc

removal. Preliminary results suggested the approach was not effective

in solving the multiple vehicle PUDPI and was not pursued further. 'Ihis

is but another example of how the precedence relationship of the PUDP

severely limits the effectiveness of heuristics that otherwise work well

on related problems.

Pair Selection

The pair selection heuristic identifies the profitability of

assigning each pair of origin/destination pairs to the same vehicle.

Using a savings value computed for each pair of pairs, a group of

customers is eventually identified for each of the V vehicles. Once

the V groups are identified, the problem is reduced to V single vehicle

problems, each solved either optimally or by the 3-optimal heuristic.

Concept. The motivation for the pair selection heuristic lies in

taking advantage of the requirement to move from an origin to its

corresponding destination. If two customers can be served as cheaply

as one, or nearly so, it appears advantageous to do so. Figure 16 shows

two origin/destination pairs that can both be serviced for the same

cost as serving the first alone. Therefore, the savings value is

computed to determine how much can be saved by serving two customers

on the same route. This value is termed SAV.

SAV formulas. For any pair of customers taken by themselves there

are only six ways in which they could be serviced. Suppose both

4A
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Figure 16. Example of how two customers- can
be served at the cost of one.
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customers are considered separately, and the only cost for each is that

from its origin directly to its destination. How much could be saved

by having both customers on the same route? The savings is taken to he

the cost of linking the two origin/destination pairs minus the cost of

separate service. The SAV value, which may be either positive or

negative, is taken to be the minimum cost of each of the six possible

service patterns. Table 19 gives the six different reconnection or

service patterns and the savings formulas in FORURAN symbology for each.

The blank spaces result from costs that appear with both a positive

and a negative sign in the same formula and are thus cancelled out.

Selection procedure. The SAV value that is the most negative

(least positive) identifies the first two origin/destination pairs to

be assigned to a vehicle. The next smallest SAV value identifies the

next two pairs. Provided neither is assigned to the first vehicle, they

are assigned to the second vehicle. If one had been assigned to the

first vehicle, the other would be also. This would leave the first

vehicle with three assigned customers. With only precedence constraints

binding, this process is continued until at least one customer (origin/

destination pair) is assigned to each of the V vehicles.

Subsequent pair assigcnment. Once all V vehicles have been assigned

at least one customer, tile process becomes slightly more complex. Let

I and J represent the next pair to be considered based on the SAV(I,, I

being the minimum of the remaining values. If I has already been

assigned but J has not, J is assigned to the same vehicle as I is,

4
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TABLE 19

PAIR SELECTION PATTERNS AND
SAV INGS FORMULAS

PATTERN SAVING FORMULA

(1) I-J-ID-JD C (1,J) +C (J, 1I)) +C(II)I -C(I, Ii))-C.J,,JI')

(2) I-J-JD-ID C(I,.J) +C(.JD, ID)-C(I, ID)

(3) I-ID-J-JD C(ID,,J)

(4) J-I-JD-ID C (J, 1) +C (I ,JD) +C (JD, I D) -C (I, IDJ-C.J,JI))

(5) J-I- ID-JD C(.J, I) +C(ID,JD) -C (J,JD)

'6, J -JD- I- ID C (JD, 1)

NOTE: I, the first origin
J, the second origin
C(,*), Cost or distance from to *

I), l's destination
JD, J's destination
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provided the vehicle does not already have its full complement of

customers. If I has been assigned to one vehicle and J to another, the

pair is already taken care of by previous assignments. If neither can

be matched with a vehicle at this time, the pair is held until one of

the customers is assigned to one of the V vehicles. Then the other is

assigned to the same vehicle provided that the first customer did not

complete the vehicle's complement. Also, when time windows are present,

it is necessary to insure that each assignment can lead to feasible

individual tours.

Feasibility of assignments. Insuring feasible tours given the

presence of time windows has been a critical factor in all of the NUP

heuristics examined. The pair selection procedure is no exception.

Trhe procedure parallels that used in both the single vehicle cases

and the multiple vehicle case by greedy selection. V individual tours

are constructed using the ordering P and then each tested for

feasibility. The customer or customers being considered for service

by a given vehicle are assigned to that vehicle only if all V of the

tours are feasible.

Interchange Heuristic

Concept.t. Given V feasible individual tours, the interchange

heuristic attempts to identify two customers on different tours that

can be switched so as to reduce the combined cost of the two respective

tours . This is accomplished by first determining for each customer the

S dIehi h iI
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penalty associated with being on the tour it is on and not on one of

the other tours, and then matching the penalties to find those that

appear to be good candidates for a switch.

Penalty computation. The penalty for origin I and its

corresponding destination ID on tour k not being on tour k' is defined

as the difference between the cost of connecting to this pair in its

present tour and the minimum cost to connect this pair to tour k'.

Let IP(IDP) and IF(IDF) represent the stops directly preceding and

directly following I(ID) in its present tour. Also let J and J' with

J preceding J' represent the closest points to I and I on t.ir k'

respectively. Then the penalty can be computed by

min [C(IP,1)+C(I,IFJ+CIDP,ID)J+C(ID,I DF ;

C(IP, 1) +C( I, ID) +C( ID, IDP)

-2 [C(I,J) +C(I),J') ] (6.10)

Large penalty values suggest it may be better to have the pair on the

other tour.

Switching pairs. It would not be practical to attempt all of the

possible switches of two pair. Therefore, switches of the pairs com-

prising the highest four or five penalty values were attempted. lhe

switch effects a change in the composition of each vehiclei's customers.

Therefore, the new configurations are optimally solved for both indi-

vidual tours. If the combined tour cost is less after the switch, the

switch becomes permanent and the process repeated.

S., .
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Interchange results. The heuristic was tried on several problems

of varying size and complexity. The heuristic very seldom identified

a profitable switch when the initial tours were the optimal routing

obtained from either the greedy or the pair selection procedures.

Consequently, this heuristic was eliminated from further consideration.

Computational Results

Because it is much more difficult to obtain optimal solutions for

the multiple vehicle POUOP than it is for the single vehicle version,

only in the case of very snall problems can the heuristics be compared

to the optimal solution. For larger problems, results are limited to

a relative comparison. As in the single vehicle case, the impact of

varying the service paramenters is also investigated.

Heuristics verses optimal. Table 20 presents results from five

sample problems. These data indicate that the pair selection technique

is very effective for problems of this size. The largest deviation

from optimal was less than 5%. The data also suggests that the greedy

solution followed by optimally sequencing the individual routes is

not especially effective. Deviations of greater than 20% are noted.

However, as will be seen later, this greedy procedure is still superior

to a random assignment of the customers among the vehicles. Also noted

below is the fact that on larger problems with time windows present,

the greedy selection heuristic demonstrates equal or slightly better

performance when compared to the pair selection procedure.
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TABLE 20

COMPARISON OF MULTI'PLE VIAItlCLE I HEURISTIC
TO 1i1e OPTIMAL SOLUTION VALUES

N V OPTIMAL GR-E[)Y ;IZil)Y I.\ION
SLIIA:CT ION .-,.It3 1ION

17 2 604 918 7.4 o04

17 2 688 742 -3() 70.1

17 2 530 746 598 5

13 3 802 1096 97.1 502

13 3 794 926 808 808

6Ld
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Comparison of greedy and pair selection on urn1.onstrailned problems.

Khen there arc no t ime window constraints present , the pair sel oct ion

procedure generally produces better results than does the greedy

seloction procedure. 'Ihe data in Table 21 verifies this for ten

problems with 16 customers (N=33) and four vehicles. Oniv in one

instance (problem 8) was the greedy pair solution better than the pair

selection solution. Only a relative comparison is possible since

N=33 and V=4 is too large to be optimally solved by dynamic progrimminlg.

Consequently, these results may or mayr not be anywhere llear optimal.

The questions of whether these selection procedures are superior to a

haphazard selection procedure remains to be answered.

Selection comparison on unconstrained probleins. Table 22 prusents

ten solutions to each of two problems with only precedence constraints

binding. The first and second solutions for each problem are the

solutions obtained from the (;reedy selection and pair selection

heuristics respectively. Solutions three through ten represent a random

assignment of four customers to each of the four vehicles. In all

cases, each vehicle is individually optimally routed using the dynanic

programming algorithm. Unquestionably, hoth the greedy and pair

selection procedures produce better results than just random Nly or

haphazardly assigning customers to the vehicles. It is also Ce\ident

that the key to a good solution for the multiple vehicle PUPP' is in the

assignment of customers to the vehicles. This is especially true for

thc.se instances that allow for on optilml1 s equencing of the assigned

pairs. Such an assignment is complicated since there are

46
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TABIII 21

COMPARISON OF (;R[IY AND PAIR SICA I ON
TECIEIN I [-OR, THO E [iJNCoXNSITRA II)

P,JDP, N=33, V=1

b-' PROBIEMl (;RIIi:Y PA\IR PA\IR S].II.(I ION
NUMBER SOLLJT I ON SO I II 10N

1 1564 13 -2

2) 1,180 11 1

.3 1280 127

41 1488 152

5150(1 1325i

0 1500 1250

7 1570 142

8 119,1 1.

I0153-4 1 W-,2
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COMt",III.\k 1 03 1: SOLIIN() ',,AIiI .\SII ON
1)1 JFJljbJ2\ SIEJ.1 1 IO.N 01: (I.STMHLS,

N= 33, V= I

SO. II ION I0BI I PR 0 )9 1 '1 1
NIUMBI.R SO)LUTI ON 8 )1.11 I I0

1 It(rcedy) 1 504 1 I

2 ( 'air) 1 0 I I

4 1792 1 3ifl

5 173o I

0 17S8 1I-

17,(o

8 I(92 .

9 1818 1 .

10 1 7ooI 1 3;; .8

. . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .



ways to d i st r ibateC thle cus;tomersI amlong t IeC V \(.'IIi c I (' For tile p rob I ems

dis;cus sed immned iatelyI above th is re present s

different possibi lities.

Varyinrg Serv ice paramneters-. tHe previous di sciissieui a'sumed lthat

onlIy th piu )rec edencec cons t ra iult s 0ere h)i uldi11 u,. 1\hlei t i me si ridow Sire1

p)re sen t a s t hey a re i n t he d ial - a- -ide se(2ry ie( probl em, the apru

Super Ii an tv' Of the paZir- slcCt iouT lieu r ist i c disape r. sb i 25

through 20 presenit resill ts "or P, cirstimui's I , Lou r \ cli ci C 1(-

vavi Ilug o, I tiies of t he unl~ I I t oft se rv icc pii Ime ]t Q :i 1 .i . I hi

soluations; are jireserit id forv tilineu 5(1 at ioul me1thods-: gi'ecdv% , crcud ii

Sel ecti on, alnd pair sel icli ci. ( 'lr] ,' t lie d il i dli Ic red t irs

shiloii d he s ub tccd to ti i opt ii I or r-eti Ii ortbnsto' imp r)'0\C

thle i IIi t siI toulr. \ir M (li lii lit o II t s)f vi ce c cusIt r ;o111ts I re t i 'j, t

als shiowi iii sIb -1) 21 sid I1 the greed>\ setlect ian procedure si10Nssj

sl li t sojr i : r t ])I] r ' e I r t io ii t -clitiicpe. .\s T lii coo -

st Ii It I o h I' l id 1i i lit I' ki- ti rllct e ssiii t 05.1 id t i. p;1 Ir

I::..i r i .. e. I * i Iii. ci -i I ii'- I C 1t,1 Ielcii,, i ii
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T,+\B],1 2.3

CO(RA, I SON 0J: SOLIT ION k\.Altl S LI M lll 11R1 Il6,6
;RI:DY PAI1R .NI, P'A I R S I LCI I ON ]I tiJR ISI I CS,

N=3, \ I, Q = 5, N1

PROBlEM. G, Rl:IM GRIT]) P.\IR PAI I1 .1 1 ION
NIILIIR SO ,tl'lT [N S)1.I I ON SO LU 1 0'N

1 1902 1632 * 21)1

2 2190 2651 215,s

1891 181 16.-

I 194 j57.1 9(02

S 90) iSIS * 1S

I -,1 1
, 88 * 21

2012 25"1 25, *

5 251)8 2615s : 1 "

'1 19,8 1 .12 I+

16 200 193000

Best Sollt io



TABLE 25

C()MIPARISOFN (:OLUTI1N VAHOIA FOR Ifff BullRELY,
G;, I-IDf PAIR A\NI) P'AIR, Slil IOtN 111 11R;IS'[ICS,

N=33, \=4, Q=5, M=5

OI I M GRI( 1t I)Y GRIlElY t'\IIR P\IR SI.IC1 ION

NIJIAI Z B S01.1 ION S0 1 0J I O SO Lt IL I I()N

1 2126 1932 * 1981

2036 190oo 10.

1861 18) 191

4 2120 1891 * 1891

5 1800 18012 * I05

0 17 7 , 1720 * [ 991

2198 2100 *

8 228o- 211 hI -oh

9 19-18 18o2 181)1

10 2090 2016 0 21 l1

B CSt SO I Ut i o
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'IABII 25

(X) PARISON (1F SOIAJIION VA\I1 11:S IOR 'llii (;RItDY,
GRP, P I'\ R ,;I)D PAIR I,!C I0. lIl S T - ,

N=35, \=4, Q=7, \1=4

l'ROHLM GRIJ:DI (;,ME)YIY PAIR PAIR SII.IC IION
NJMBLR SO LITI ION SO ,UI ION SO [UTI ON

1 1782 1716 1586 *

2 1566 1518 * 163S

1988 1710 1518

4 1764 1050 1181 *

5 1o8 124 1562

' 1588 1538 * 156,

1668 1620 * 172.1

8 16 14 1526 1.1 '

9 1880 1(01 1562

16 1772 1541 1621

Best Solution
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'IABI 20

COMPAR ISON OF SOLUTJIION VAIIltS IOR IiI (;RII+I ,
GREEDY PAIR AND PAIR SHII.CIION HIUR ISTICS,

N=33, V=4, Q=1I, M=o

PROBlEM GREIEDY GRElY PA I R PA 11, SI. I I ON
NUMBER SO LT I ON SO IiT I ON SOIJ I ' ON

1 2002 1081 11 .s

2 1518 1,162 1 o

3 1602 1 170 I ,

4 1932 15 1 I1

5 1876 1558 1 .2s I

6 1596 1501 1 1.11

7 1770 1728 1.58

8 1802 1322 14 I3

9 173. 121 * 1V(,o

10 1740 15-0 1is(

Best Solution

.i. + IP
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Performance ol larger problems. Tables 27 through 31 present

results for 30 customers and either three or five vehicles. The

results parallel those discussed above. Neither the pair selection nor

tile greedy selection )roduces consistent l1y superior results. Khen the

constraints are relatively tight, the greedy selection procedure appears

to produce better results.

Discussion of results. The fact that a greedy-I ike procedure often

produces the best results is uncomforting. (;reedy heuristics seldom

produce the best solutions on other diff icult combinatorial problems.

The fact that these solutions cannot be compared to tile optimal is also

distressing. There is no way of telling the t rue effectiveness of

these heuristics on other than very small problems. The pair selection

hleur tistic, as developed, and the greedy selection hieuristics may wel1

be excellent ones. lowever, it seems likely that a better technique

for determining which customers to assign to what vehicle exists.

What that technique is or what the basis is for its development are as

yet unanswered questions. Such questions represent one area for further

investigation. 'Ibis and other areas that appear to offer research

opportunities that expand on this work are discussed in the next

chapter.



TABLE 27

COMPAR ISON OF SOLUT ION VALUES FOR '111IL GREIAY,
GREEDY PAIR AND PA IR SELECTION Ililt)JRI S11 C:S

N=61, V=3, Q=S, M=5

PROBLEM GREEDY G;REEDIY PAI R PA I R SEFL 1.CI I ON
NUMBER SOLUT ION SOIJIT ON 501311 IION

1 3696 3(4)) S

2 3558 331 -1 3 8241

3 3780 3s3 's I3O

4 3234 31 I) o .3318

5 3354 3134 13

6 3410 3.-741'1

7 3036 3o3 s 3242

8 3505 3408os 34128

9 366 2 3 57 0 -)Io, *

10 3652 S022 S9~4)

*Best Solution
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TAB.E: 28

COMPAR ISON 01: SOI.Il ION V\AIIiS FOR '111 1 GRIll)Y,

(RI13)Y P\IR AND PAIR SELE.I:C'I- 'N ILLURISTICS,
N=61 \,=3, Q=7, M-

PROILEM GRIAlY GRIEDY lAIR PAIR S.)I(I IOIt)N

NIJMBE R SOLII I ON SO LIII ION 501.I111 ONX

1 2910 282.1

2 3230 2 12 2* 1

3 2876 2730 28S2

4 5088 2870 2-25

5 2 9 02 2000* 2 77 2

6 2872 2668 2811

7 2876 2640 * 2 -

8 2708 2.572 27S

9 3511 2922 2

10 3214 29(10 290u

* Best Solution
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TABLE 2)

COMPAR ISON 01 SOLU' ION VAIAIlS FOR THi E GRIII)Y,
GREEDY PAIR AND PAIR SELECTI ON IIEUR ISTICS,

N=61l, V=3-, Q=l , I lO_

PROBIIM GREEDY (;REI)Y PA R PAIR SELECT I ON
NUMBER SOLUTION SOLUTI ON SOLUT I ON

1 3198 28-2 2381 *

2 2984 23( 2708

3 2830 2688 288

4 2962 2-08 2830

5 2598 22 1 *0 23!}.

0 2390 22 18 2510

7 2888 258 253u

8 2710 23t0 2120

9 29.1 8,

10 3200 2838 2334

Best Solution
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TABLE 3(0

COMPARISON 01: SOLUTIO V\ALIHIS FOR ll. GRIIDY,
GREIDY PAIR AND PAIR SI.IlCI ON HILURIflICS,

N=61, V= , Q=I1, M=I1

PRO LEM (;RIlAI'l G;R1:HIDY P.\IR PAI,R SI II(1 ION
NUMBLA R SOLIUT I ON SOL[Jf I ON S1,1I ON

1 3220 -82o -15 Is

2 2888 27(2

3 2984 27.5

4 2722 212 2791

5 2404 209-1 * 231.1

7 2804 2698 2728

8 2020 2376 7257h

9 2950 2722 * 312

10 3198 277'2 2138

•Best Solution

o'4
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COMPtARISON OF SOIAJI ION, V:I WtS ItR Ti1L GRITM!)Y

GRLLI)Y PAIR A" 1) PAIl StllCtTlIO:- tIII IISTI
N=61, V=5, Qz7, .=

PROBLEl MIIIY GRII'IY PAIR PA IR SI-lItI O5
NIIlBLIR SO III ON SO ITIN .- ,501.11 0

1 2890 2561 * 2S Il

- 3120 2-9 2752 *

2782 2670 292.1

2)o4 2S(, * 217)

5 3200 292(0 2710 *

0 2558 2-152 2 4

7 28o2 252 27 *

8 3084 2610 * (

9 307o 2S32 2850

10 324o 299 2h I

Best Solution
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* ~SUt;GLSi'ji AREAS FOuR 12UMRI RL'SLARCI,

The Work docuImented in tilie preceding c iiap t er represent s oneI at

* ~the first at tempts to de fi nc and solve thli pickiij and del iver\ problecm.

As such, it represents onl1y a f irst stop inl thait di rect ion. Maiiv

a-,;pec ts o f the problIem rema i ri t o 1)c in1v es t i ga t cd The11re tore, ti is

chapter outlnes several re sea rc h opportuonities thait have suggested

themselves during thle courIse Of thjis effort.

1 . SIJMN\ltY 01: ASPI;C!S SHiMl lIi

In Chapters I and I II the PUNl Was definled an1d discussed inl its

Most genlerl-, forml. SubhSC(pient Iy, a more restricted form of the problem

was developed and explored. Spc ifica liv, Champters 1 \ through \ I dealt

with instances of thle 11I1d, where thle Const raints we~re e.press al e inl

terms of the stop or SeljUece1 numbe1hr Of the VUlMic IC Sr-V inj g1 a part i n -

lar cuIstomer. Capacity was assumed to not be al binding const r; mlt.

This allowed for1 thle exact soIlution of veylrg igl eijjcle

pro1 ems asT Zi el IC Ws modest S ized mu I1t iple velie ns ie heuir i t is

discussed considered the same problem instances in order to hnive a

p)recCis mS isir TT S110Of how We'IIi -ll gie hen I St i C I performed.1 tel a CI1XAt ion1

Of tIIC; reCst r jet i 0115 0 Her21 tilie 'i r'S al-rea of opIor etnill it.



11 CUNSI ULIATIO[N 01:i 11L (INLRAL P.[RUBILLM

[he most general vertsion of the PUWP1 is cons tri ied by vehlicle

Capac ity, timei windows, quaility of scrxtece, operaIt .ja oll " c sider-at i

and of course the precedence reqo lil-remen t. MientlSCII tl.;,clSti-P llt 5

cannot he cxpr-essed as discussed above, the heictistic techiniq[tes

deve taped herein will riot wor-k without mnod if iet ions. 1 lie d\n1:111i Ic

pr-ogrammni ng alIgo i, i thin w il n rot worik at all ini mos,;t cies . Con scqutieniit I

exact solu1tions; to theQ genlera I prob 1Tl~~e douibt fill . lb e Ire1 fiore C

I ~~~compai i sort among hecuri St i c s pr-obab ly w i 11I have to be- m'ade mul a e0 [at 0

bas is.
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Four and S-Optimal

For the TSP and the VRP, an r value of 3 in the r-optimal heuristic

was usually the largest value used. The reason is becuase of the

exponential increase in computations as the value of r increases.

Consequently, values of r greater than 3 were deemed practical. The

number of reconnection patterns also increases exponentially as the

value of r increases. The same phenomenon is true with the PLUIP.

However, due to the precedence constraints of the problem, it may not

be impractical to use larger values of r. This might be accomplished

by only considering those reconnection patterns that offer the highest

probability of obtaining a feasible reconnection. The range of stop

numbers included in each loop might also be limited so as to include

only those stops which are most likely to yield a feasible reconnection

pattern. For the 3-optimal solution, this range was taken to be Q

stops. Given the demonstrated superiority of the 3-optimal solution

over the other heuristics tested, a 4 or S-optimal heuristic appears to

be a most fruitful area to investigate.

Optimal Solution to Related Problem

For the general problem where dynamic programming cannot be used

to obtain the exact solution, it may be possible to use dynamic

programming to obtain a good solution. This could be accomplished by

approximating the general constraints by stop numbers and then solving

the related problem by the dynamic programming algorithm. If the

resulting solution is feasible to the original problem, one would
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hopefully have a good solution. If the solution were not feasible, some

interchange routine would be needed to find a feasible solution with a

minimum of additional cost. Intuitively, this procedure should perform

well and could be used on either the single vehicle problem or as the

routing portion of a two step solution of the multiple vehicle PUDP.

VIII. PUDP POTENTIAL

The PUDP is a new problem which is only just beginning to attract

research attention. Given both the complexity of the problem, which

makes obtaining solutions difficult, and the practicality of the

applications, the PUDP should appeal both to the theoretician and to

the practitioner for some time to come. The work documented herein

as well as the few related articles represent only the tip of the

iceberg. A great deal remains to be accomplished before the PUJP can

be considered fully solved.
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